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Exercise 5.1
Question 1:

Prove that the function./ (¥)=5X¥=3is continuous at
Answer

The given function is /'(x)=5x-3
Al.\':O,./'(O)=5xO—3=3

Iimf(x) = lim(5x—3) =5x0-3=-3

< lim f(x)=£(0)

Therefore, f is continuous at x = 0
Atx=-3, f(-3)= 5><(—3)——3 =-18
‘lu.n}f(x) = !1@}(5.\'—3) =5x(-3)-3=-18
s him f(x)= f£(-3)

Therefore, f is continuous at x = -3

Atx = 5._/'(.\') = ./‘(5) =5x5-3=25-3=22
lim f(x)=lim(5x-3)=5x5-3=22

wlim f(x)=£(5)

Therefore, f is continuous at x = 5
x=0,atx=-3and atx = 5.

Question 2:
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Examine the continuity of the function f(¥)=2x*-1atx=3
Answer

The given function is f'(x) = 2x* -1
Atx=3,f(x)=f(3)=2x3"-1=17

i /(5) = limy (2" 1) =243 -1 -17

~lim f(x)=£(3)

Thus, f is continuous at x = 3
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Examine the following functions for continuity.

_-..\‘¢5

(@) f(x)=x-5 () f(x)

vy

X—

i)

o

2
5

() [lx)= \\; =X # 5 (q) f(x)=|x-5

Answer

(a) The given function is S(x)=x-5

It is evident that f is defined at every real numberk and its value atk is k — 5.

It is also observed that, _l‘if}./l("') 'liﬂ](x"‘i) =k-5=f(k)

I'igg f(x)=f(k)

Hence, f is continuous at every real number and therefore, it is a continuous function.
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1

X=

- X%5

(b) The given function is f(x)=

N

For any real number k # 5, we obtain
. o & I
) e 5
1
Al\.’-k -— Aikiﬁ
so, f (k) P (As )
|iVIT)_/.(.\')=,/'(k)

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous

function.

3

25
yXFE =D
5

. X -
flx)=
(c) The given function X+
is

For any real number ¢ # —5, we obtain

?-25 . (x+5)(x-5
“ln‘/.(_\‘).—:“rn X = Ilm(\+ )(1 )
P ¢ x 45 Y

o, 7(6)= Do) (asens)
llm S(x)=f(c)

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous

=lim(x—5)=(c-5)

X+ ¥

function.

JS -x,ifx<5

(d) The given function f(x)=|x-5

l,\'— 5 ifx=5
is

This

function f is defined at all points of the real line.
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Let c be a point on a real line. Then, c<5o0orc=50rc>5
Casel:c<5

Then, f(c)=5-c

I‘_ir’n_f'(.\') = |\il'.l1(5 -x)=5-¢

- lim f(x)=f(c)

Therefore, f is continuous at all real numbers less than 5.

Casell:c=5

Then, J(¢)=/(5)=(5-5)=0
lim f(x)=lim(5-x)=(5-5)=0
lim f(x)=lim(x-5)=0

sim f(x)=lim f(x)= f(c)
Therefore, f is continuous at x = 5
CaseIll: c > 5

Then, f(c)=f(5)=c-5

lim f(x)=lim(x-5)=c-5

slim f(x)= f(e)

Therefore, f is continuous at all real numbers greater than 5.

Hence, f is continuous at every real number and therefore, it is a continuous function.

Prove that the function f(.\‘) = x"is continuous at x = n, where n is a positive integer.
Answer

The given function is f (x) = x"
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It is evident that f is defined at all positive integers, n, and its value at n is n".

Then, lim f(n)= l_im(.\"" ’ =n"
sdim f(x)= f(n)

Therefore, f is continuous at n, where n is a positive integer.

Is the function f defined by
. ] x, ifx<1

X)=+
/() l* ifx>1

continuous at x = 0? At x = 1? At x = 2?

Answer

£(x) ]\ ifx<l1
. . . Y =

The given function fis J | X l“ s
At x =0,

It is evident that f is defined at 0 and its value at 0 is O.

Then, lim f(x)= limx=0

a0 x—

slim f(x)= f(0)

=0

Therefore, f is continuous at x = 0 At x
= 1, fis defined at 1 and its value at 1

is 1.

The left hand limit of fat x = 1 is,

lim f(x)=limx=1

| >t
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The right hand limit of fat x = 1 is,
lim f(x)=1lim(5)=5
x—1" . r—»]
sim f(x)# lim f(x)

=] ) r—»]
Therefore, f is not continuous at x = 1
At x = 2, f is defined at 2 and its value

at 2 is 5.
Then, lim f(x)=1im(5)=5
cim £ (x) = £(2)

Therefore, f is continuous at x = 2

Find all points of discontinuity of f, where f is defined by

[2,\' +3,1fx<2

./'(-\')=]

2x=3, ifx>2
Answer
[2.\' +3,1fx<2

T)=10x-3, ifx»2

It is evident that the given function f is defined at all the points of the real line.
Let c be a point on the real line. Then, three cases arise.

(i)y c<2

(i) ¢ > 2

(iii) c = 2

Case (i)c< 2
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Then, f(¢)=2c+3

l_im_ j'(_.\') = lﬁm (2x+ 3) =2c+3

~im f(x)=f(c)

Therefore, f is continuous at all points x, such that x < 2

Case (ii))c> 2
Then, f(c)=2¢-3

hm/(\) = l_im_(2.\'—3) =2¢-3

sAim f(x)= f(c)

Therefore, f is continuous at all points x, such that x > 2
Case (iii)c =2

Then, the left hand limit offat x = 2 is,
7

lim f(x)=lim(2x+3)=2x2+3=
The right hand limit of f at x = 2 is,

lim f(x)=lim (2x-3)=2x2-3=1

It is observed that the left and right hand limit of f at x = 2 do not coincide.
Therefore, f is not continuous at x = 2

Hence, x = 2 is the only point of discontinuity of f.
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Find all points of discontinuity of f, where f is defined by

|x|+3,ifx < -3

-2x,if-3<x<3

flx)=
|

6x+2,ifx=23

Answer

.\" +3==x+3, ifx<-3

f(x): -2x, if -3<x<3
16.\' +2,ifx23

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

If ¢ <=3, then f(¢)=—c+3

lim f(x)=lim(-x+3)=~c+3

~lim f(x)=f(c)
Therefore, f is continuous at all points x, such that x < =3
Case II:

If ¢ =-3, thenf(-3)=—(-3)+3=6

lim f(x)= lim (-x+3)=-(-3)+3=6

lim f(x)= lim (-2x)=-2x(-3)=6

wlim £ (x) = f(-3)

Therefore, f is continuous at x = -3
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Case III:

If -3<c<3, thenf(c)=-2c and lim f(x)=lim(-2x)=—-2¢

cAim f(x) = f(c)

Therefore, f is continuous in (=3, 3).
Case 1IV:

If ¢ = 3, then the left hand limit of fat x = 3 is,
lim /(x)= lim(-2x)=-2x3=-6
The right hand limit of f at x = 3 is,

lim f(x)=lim(6x+2)=6x3+2=20

It is observed that the left and right hand limit of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:
If e >3, thenf(c-') =6¢+2 and I_imf(_\') = lim (6x + 2) =6c+2
= lim /(\) = f(c)

Therefore, f is continuous at all points x, such that x > 3

Hence, x = 3 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by

Page 9 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

I

: afx =0
f(x)=1x
0, 1fx=0

Answer
]J ifx#0
f(x)=1x
0,1fx=0
It is known that, ¥ < 0= l\[ =—yandx>0= M =7y

Therefore, the given function can be rewritten as

H—_——x:"‘] if.\.<0
x x

/(\) =40, ifx=0
|i'|='_":|‘ ifx>0
X X%

The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <0, then f(c)=-1

lim f(x) = lim(~1) = -1

<. lim f(x)=f(c)

Therefore, f is continuous at all points x < 0
Case II:

If ¢ = 0, then the left hand limit of fat x = 0 is,
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lim f(x)=lim(-1)=-1

x—0 -0

The right hand limit of f at x = O is,

lim f(x)=lim(1)=1

x—{ x>l

It is observed that the left and right hand limit of f at x = 0 do not coincide.

Therefore, f is not continuous at x = 0
Case III:

If ¢ >0, then f(c)=1

lim f(x)=lim(1)=1

sAim f(x)= f(c)

Therefore, f is continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.
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Find all points of discontinuity of f, where f is defined by
Ji ifx<0
I

f(x)=
[—], ifx=0

Answer

Ji ifx<0
[

f(x)=
[—], ifx=0

It is known that, X <0 =>|x| = —x
Therefore, the given function can be rewritten as

e ) x, o =-1,1fx<0
f(x)={|x -x
]\—1, ifx>0

= f(x)=~-1forallxeR

Let ¢ be any real number. Then, I‘“j‘ f(x)= li_']l‘_(_]): =]

Also, f(¢)=~1=lim f(x)
Therefore, the given function is a continuous function.

Hence, the given function has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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f(x) _fxHLifx2]

1.\': +1, ifx <l

Answer
[.\'+ I, ifx>1

f(x)=1

1.\': +1, ifx <l

The given function f is defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:
If ¢ <1, then f(¢)=c’+1and lim f(x) = l‘irlll(x: +1)=c* +1
< lim f(x)=f(c)

Therefore, f is continuous at all points x, such that x < 1

Case II:
Ife=1, thenf(c)=f(1)=1+1=2

The left hand limit of fat x = 1 is,

lim /(x)=lim(x*+1)=1+1=2

x>l 1

The right hand limit of fat x = 1 is,
lim /(x)=lim(x+1)=1+1=2
x— ) 1

< lim f(x)=/(1)

Therefore, f is continuous atx = 1
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Case III:
Ifc>1, thenf(c)=c+1

lim f(x)=lim(x+1)=c+1
~lim £ (x) = f(c)

Therefore, f is continuous at all points x, such that x > 1

Hence, the given function f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by

i x*=3,ifx<2
O
1.\" +1, ifx>2
Answer

, =3, ifx<2
O

1.\" +1, ifx>2
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:

If ¢ <2, thenf(c)=c’ =3 and lim f(x)=lim(x'-3)=c"-3
~lim £ (x) = f(c)

Therefore, f is continuous at all points x, such that x < 2
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Case II:
Ifc=2, thenf(c)= f(2)=2"-3=5

lim f(x -Ilm(\ - )=2 3=35
1)=2

Iim f(x)= Ilm(

-2

lim f(x) = f(2)

x—»2

Therefore, f is continuous at x = 2

Case III:

[fc>2, thenf(c)=c"+1

lim f(x) = hm(\ +1)=c¢’+1

lli1}1 f(x)=f(c)

Therefore, f is continuous at all points x, such that x > 2

Thus, the given function f is continuous at every point on the real line.

Hence, f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
‘ (10—, ifx <1
fo-ff
Xy

if x >1

Answer
1 .
i x =1 ifx<l
f(x) 1 S
l.\". ifx>1
The given function f is defined at all the points of the real line.

Let c be a point on the real line.
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Case I:
Ife <1, then f(c)=¢"~1and lim f(x)= ]‘illl(.l"“ —1)=¢"-1
Ikil.lll_ f(x)=f(c)

Therefore, f is continuous at all points x, such that x < 1

Case II:

If c = 1, then the left hand limitof fat x = 1 is,

lim £ (x)=lim(x"—1)=1"-1=1-1=0

a-»l v

The right hand limitof fat x = 1 is,

lim /(x)=lim(x)=1% =1

el elinix)

It is observed that the left and right hand limit of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1

Case III:

Ife>1, thenf(c)=c

lim /(x)=lim(x*)=¢’

slim f(x)= f(e)

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of

discontinuity of f.

Is the function defined by

Page 16 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

7 ) [.\‘+5. ifx<l1
x)=

' 1.\'—5. ifx>1
a continuous function?

Answer

) ) _ [.\'+5. ifx<1
The given function  f(x) =1
is

x5, ifx>1
The given function f is defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:

Ife <1, thenf(c)=c+5and lim f(x)=lim(x+5)=c+5

cAim f(x) = f(c)

Therefore, f is continuous at all points x, such that x < 1
Case II:

Ifc=1, thenf(1)=1+5=6

The left hand limit of fat x = 1 is,
lim f(x)=lim(x+5)=1+5=6

x| e t—! ’

The right hand limit of fat x = 1 is,

lim f(x)=lim(x-5)=1-5=—4
=1 . r—»]'

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1
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Case III:
Ife>1, thenf(c)=c—-5and lim f(x)=lim(x-5)=c-5

sAim f(x)= f(c)
Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of

discontinuity of f.

Discuss the continuity of the function f, where f is defined by
J3, if0<x<l
f(x)=44, ifl<x<3
{5. if3<x<10
Answer
3, if0<x<1
The given function is/(x)=14, if 1<x<3
15. if3<x<I10
The given function is defined at all points of the interval [0, 10].

Let c be a point in the interval [0, 10].

Case I:
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If0<c<l, thenf(c)=3and lim f(x)=1lim(3)=3
sdim f(x)= f(¢)
Therefore, f is continuous in the interval [0, 1).

Case II:
Ife=1, thenf(3)=3

The left hand limit of fat x = 1 is,
lim f(x)=1im(3)=3

x—| -1

The right hand limit of fat x = 1 is,
lim f(x)=1lim(4)=4

x—l . ]

It is observed that the left and right hand limits of f at x = 1 do not coincide.
Therefore, f is not continuous at x = 1

Case III:
If1<c <3, thenf(c)=4 and lim f(x)=lim(4)=4
slim f(x)= f(¢)

Therefore, f is continuous at all points of the interval (1, 3).

Case 1IV:

Ifc=3, thenf(c)=5
The left hand limit of fat x = 3 is,
lim f(x)=lim(4)=4

The right hand limit of f at x = 3 is,
lim f(x)=lim(5)=5

It is observed that the left and right hand limits of f at x = 3 do not coincide.
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Therefore, f is not continuous at x = 3
Case V:
If 3<¢ <10, thenf(c) =5 and lim f(x)=1lim(5)=5

lim f (x)=f(c)

Therefore, f is continuous at all points of the interval (3, 10].

Hence, f is not continuous at x =1and x =3

Discuss the continuity of the function f, where f is defined by
JQ.\'. ifx<0
0, iIf0<sx<l

Fix)=
L‘t.\', ifx>1

Answer
JQ.\'. ifx<0

0, if0<sx<l
L‘t.\', ifx>1

The given function is./ (x)

The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:

If ¢ <0, then f(c)=2¢

lim £ () = lim(2x) = 2¢

cdim f (x)=f(c)

Therefore, f is continuous at all points x, such that x < 0
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Case II:

If¢=0, thenf(c)=£(0)=0

The left hand limit of fat x = 0 is,
lim f(x)=lim(2x)=2x0=0

x> a0

The right hand limit of f at x = O is,
lim /(x)=1im(0)=0

Al r—0

sim f(x)=/(0)

x—

Therefore, f is continuous atx = 0
Case III:

If0<c<l, thenf(x)=0and lim f(x)=1im(0)=0
slim f(x)= f(¢)
Therefore, f is continuous at all points of the interval (0, 1).

Case IV:
If ¢ =1, then f(c)=f(1)=0

The left hand limit of fat x = 1 is,
lim /(x)=1im(0)=0

x| =

The right hand limit of fat x = 1 is,
lim f(x)=lim(4x)=4x1=4

x—=|' x>

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:
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If e <1, thenf(c)=4c and lim f(x)=lim(4x)=4c
sdim f(x)= f(¢)
Therefore, f is continuous at all points x, such that x > 1

Hence, f is not continuous only at x = 1

Discuss the continuity of the function f, where f is defined by

"—2, if x <—1
f(x)=42x, if -1<x<1
l’.!, ifx=>1

Answer
"—2. ifx<—1
f(x)=12x, if -1<x<1
l2, ifx>1
The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:
Ifc<-1, thenf((‘)z 2 and Illnf(\’): I|n1( 2): 2
~lim f(x)=f(c)

Therefore, f is continuous at all points x, such that x < -1

Page 22 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

Case II:
Ifc=-1, thenf(c)=f(-1)=-2
The left hand limit of fat x = =1 is,
lim f(x)= lim (-2)=-2
x——1 |
The right hand limit of fat x = —1 is,
lim f(x)= lim (2.\'):2x(—l):—2
x—=—1' s—-1' :
7 lim f(x)=r(-1)
Therefore, f is continuous at x = —1
Case III:
If -1<e<], thenf(c)=2¢
]_im_ f(\) = ]_im(2.\') =2c
sim f(x)=f(c)
Therefore, f is continuous at all points of the interval (-1, 1).
Case 1V:
Ife=1, thenf(c)=f(1)=2x1=2

The left hand limit of fat x = 1 is,

lim f(x)=lim(2x)=2x1=2
x—» X

el

The right hand limit of fat x = 1 is,

lim f(x)=1lim2=2
1’

~lim f(x) = 1 (c)

Therefore, f is continuous at x = 2
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Case V:

If ¢ >1, thenf(c¢)=2 and lim /' (x)=1im(2)=2
lim f(x)=f(¢)
Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all points

of the real line.

Find the relationship between a and b so that the function f defined by
ax+1, ifx<3

= {I)_\' +3, ifx>3
is continuous at x = 3.

Answer

[u.\' +1, ifx<3

|bx+3, ifx>3

If f is continuous at x = 3, then
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lim £(x)=lim £(x)=7(3) (1)
Also,
lim f(x)=lim(ax+1)=3a+1

lim /(x)=lim(bx+3)=3b+3

X3

£(3)=3a+1

Therefore, from (1), we obtain
3a+1=3h+3=3a+1
=3a+1=3h+3

=3a=3h+2

)
=a=b+—
3

Therefore, the required relationship is given by, a =h +

W

For what value of 4 is the function defined by

[/i(x“ —2.\'), ifx<0
14.\' +1, ifx>0

continuous at x = 0? What about continuity at x = 1?

£Flx)=

Page 25 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

Answer
[A(x*-2x), ifx<0

The given function is ./'(-\')=‘l4 i T
dx +1, ifx>

If f is continuous at x = 0, then
lim f(x)=lim f(x)=f(0)

= ‘111’1]1 ).(.\'3 - 2.\')= '11{1)1 (4x+1)= }.(03 - Zx())

= A(0°=2x0)=4x0+1=0

= () =1=0, which is not possible

Therefore, there is no value of A for which f is continuous at x = 0 Atx =1,
f(l)=4x+1=4x141=5

lliln(&l.w- )=4x1+1=5

~lim £ (x)=£(1)

Therefore, for any values of A, fis continuous at x = 1

Show that the function defined by g(x)=x—[x]is discontinuous at all integral point.

Here [\] denotes the greatest integer less than or equal to x.

Answer

The given function
is

g(x)=x—[x]

It is evident that g is defined at all integral points.

Let n be an integer.
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Then,

g(n)=n-[n]=n-n=0

The left hand limit of f at x = n is,
lim g(x) = lim (x—[x]) = lim (x) - lim [x] =n—(n-1) =1

X—n

The right hand limit of f at x = n is,
lim g (x) = lim (x—[x]) = lim (x) - lim [x] =n—n=0

It is observed that the left and right hand limits of f at x = n do not coincide.
Therefore, f is not continuous at x = n

Hence, g is discontinuous at all integral points.

Is the function ./'(-\‘) =x’—sinx+5 defined by continuous at x = p?

Answer

_ _ f(x)=x*—sinx+5
The given function
is
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It is evident that f is defined atx = p

Atx=m, f(x)=f(r)=n"-sinn+5=n"-0+5=71"+5
Consider lim f(x) = Iim(.\'"' —sin .\'+5)

Putx=m+h

If x = m, then it is evident that h— ()

slim f(x) = Iim(.\’: —sinx+ 5)

(—»X K=

=lim ;—(n+h)1 —sin(m+h)+ 5}

h—0L

=lim(n+h) - limsin(rt+4)+lim 5

fr—0 fe—0)

=(rn+0) - lim[sin wcosh+ cosmsinh ]+ 5

i)
=7’ —limsin wcosh— lim cos wsinh+ 3
h—0 h—0
=7 —sinmcos0—cosmsin0+5
=7 —0x1—(=1)x0+5
=1 +5

“lim £ (x) = £ ()

X=X

Therefore, the given function f is continuous at x = n

Question 21:
Discuss the continuity of the following functions.
(a) f (x) = sin x + cos x

(b) f (x) = sin x — cos x

(c) f (x) = sin x x cos X
Answer

It is known that if g and h are two continuous functions, then
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g+h, g—h, and g.hare also continuous.

It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions.
Let g (x) = sin x
It is evident that g (x) = sin x is defined for every real number.
Let c be a real number. Put x = c + h
Ifx - c,thenh—0
g(c)=sine
lim g ()= lim sin x

=limsin(c+h)

Jra
=lim[sin c cos i+ coscsin h]
JiaD
=lim(sinccosh)+lim(cosesinh)
>0 : h—0
=sinccos0+coscsin0
=sinc+0
=sinc

limg(x)=g(e)

Therefore, g is a continuous function.

Let h (x) = cos x

It is evident that h (x) = cos x is defined for every real humber.
Let c be a real number. Put x = c + h

If x - c,thenh —-0h(c) =cosc
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limA(x)=limcos x
X K=

=limcos(c+h)

Si—(

= lim[cosccosh—sin ¢sin h]

Je-»()

=limcosccosh—limsinesin i

=0 =0
=cosccos(—sinesin0
=coscxl—=sinex0
=CO0Ssc

<. lim h(x)=h(c)

Therefore, h is a continuous function.

Therefore, it can be concluded that

(@) f(x) =g (x) + h(x) =sin x + cos x is a continuous function

(b) f (x) = g (x) — h (x) =sinx — cos x is a continuous function

(o) f(x) = g (x) x h(x)=sinx X cos x is a continuous function
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Answer

It is known that if g and h are two continuous functions, then

h(x)

(7) 1(x) . 2(x)# 0 is continuous
g(x)

(i) , g(x)#0 is continuous
g(x)

(iir ) : , h(x)=0 is continuous

h(x)
It has to be proved first that g (x) = sin x and h (x) = cos x are continuous functions.
Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.
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Let c be a real number. Putx =c + h
Ifx ¢, thenh 20
g(e)=sine
limg(x)=limsinx
=limsin(c+h)
Jral f
= Iim[sin ccos h+coscsin h]
Jia
= !im(sin ccosh)+lim(cosesinh)
(] : h
=sinccos0+coscsin0
=sinc¢+0
=sin¢
limg(x)=g(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Put x =c+ h

If x—>c, then h—>0

h (c) = cosc
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limA(x)=limcosx

XA L—C

=limcos(c+h)

fi—=0

= lim[cos ¢ cos h—sinesin h]

Sl

=limcosccosh—limsinesinh

fe—»(1 fa—()

=cosccos—sinesin(

=coscxl=sinex(

=cosc
sdimb(x)=h(c)

X=3C
Therefore, h (x) = cos x is continuous function.

It can be concluded that,

cosecx = , sinx # 0 is continuous

sinx
= cosecx, x # nn (ne Z) is continuous

a

Therefore, cosecant is continuous except atx = np, n1Z

1 : .
secxy = . cosx # 0 is continuous
COS X

= secx, x#(2n+ ])1_: (neZ) is continuous

; T i
Therefore, secant is continuous except at * =(2n+ '); (neZ)

—

——, sinx # 0 is continuous
sin x

cotx=

= cotx, x #nm (ne Z) is continuous

Therefore, cotangent is continuous except atx = np, n iz

Question 23:
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Find the points of discontinuity of f, where
Jsm a2 ,ifx<0

X
l_\' +1, iIfx=0

f(x)=

Answer

-1
l.\' +1, ifx=0

It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:

. . \ .
sinc o . _(sinx) sinc
and lim f(x)= Illﬂ( J =

Xon X on \ X

If ¢ <0, thenf(c)=
c
~lim f(x)=f(c)

Therefore, f is continuous at all points x, such that x < 0
Case II:

Ifc>0, thenf(c)=c+1land lim f(x)=lim(x+1)=c+]1
wlim f(x) = £ (c)

Therefore, f is continuous at all points x, such that x > 0

Page 33 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

Case III:
Ife=0, thenf(c)=f(0)=0+1=1

The left hand limit of f at x = 0 is,

sinx

lim f(x)=lim =1

x () x () X

The right hand limit of f at x = 0 is,
lim f(x)=lim(x+1)=1

x— 0’

sdim f(x)=lim f(x)=/(0)

x>l x—»)

Therefore, f is continuous atx = 0
From the above observations, it can be concluded that f is continuous at all points of the

real line.

Thus, f has no point of discontinuity.

Determine if f defined by

23 |
J.\" sin—, ifx=0
X

S(x)=
}%0, ifx=0

is a continuous function?

Answer
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I -
J.\" sin—, ifx#0
X

f(x)=
]4_ 0, ifx=0

Itis
evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

= 5 ool |
If ¢ #0, then f (() =¢ sin—
e

/ \ / \ 3\
iz : VOO (o (Y rRRN | (O giced
lim f(x) = Iun{x’ sin— :‘t{llm \) limsin— |f ¢’ sin—
\ N C \', P

XN N "\' /!‘ / \."N L‘
sdim f(x)= fe
im /(x)= /(c)
Therefore, f is continuous at all points x # 0

Case II:

If¢=0, thenf(0)=0
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(5 . 1 5 e
lim £ (x)=lim Lx' sm—J = Iim(x‘ sin—)
x—{ x—0 x x>0 X

2 ]
It is known that, —1<sin—<1, x#0
X

A cort] A

= —X £sSsIn—<Xx°
X

. 2 . 3z | . 2

:>I|m(—.\' )Sllm x sin— [<limx

r—0 X0 X ()

=0< Iim(x3 sinl_] <0

x—0 \ X
i s . |
= lim [.\' sin ) =0
x-0 X
s dim f(x)=0

x—»0"

Similarly, lim /(x)= lim (.\': sinlJ = Iim[.r: sinl] =0

x—0" r—0" \ 8’ v X

sim f(x)=£(0)=lim f(x)

x>0 x—)"

Therefore, f is continuous at x = 0
From the above observations, it can be concluded that f is continuous at every point of

the real line.

Thus, f is a continuous function.

Question 25:
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Examine the continuity of f, where f is defined by Answer

(x) [sin x—cosx,ifx#0
x)=
! 1 ifx=0

[sin x—cosx,ifx#0

A ifx=0

It is evident that f is defined at all points of the real line.

Let ¢ be a real number.

Case I:
Ifc#0, thenf(c)=sine—cosc
l\irp_ F(x)= l\ix:rl_(sin x—cosx)=sinc-cosc
<. lim ¥{x)=f(c)

Therefore, f is continuous at all points x, such that x # 0

Case II:
If ¢ =0, thenf(0)=-1

lim f(x)=lim (sin x—cosx) =sin0—cos0=0—1=~1

v

lim 7 (x)= lim (sin x—cosx)=sin0—cos0=0-1=-]

v—0"

sim f(x) = lim f(x)= £(0)

=0 v

Therefore, f is continuous atx = 0
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From the above observations, it can be concluded that f is continuous at every point of

the real line.

Thus, f is a continuous function.

Find the values of k so that the function f is continuous at the indicated point.

kcosx .. T
~? ” X # ; X
f(x)=4""4" “ atx=—
' o5 T 2
13. ifx=—
2
Answer
(kcosx .. =
= 1fx = =
f)=y"F 2
& - m
3, ifx=—
2
m
The given function f is continuous at* = 5. if fis defined at and if the value of thef

T T
at * = equals the limit of f at* = .

n
xX=—
2
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m e
It is evident that f is defined atX = 5 and I F 3

- . kcosx
lim £ (x)=lim
x ,‘: X ,f M—2ZX

T
Putx=—+h
2

Tt
Then. x — = =>h—-0

s k cos §+h)
s dim £ (x) = lim =S = fim
x ’!: X >“ n_z-“ h-0 T
2 2 n—Z[ +/IJ
2
; &
=kl|m—s—lp~—1=f-lim:lgf—’=£.l:£
h=0 D 7 D b h 2 2
im ()= 3
. -
= —-=3
2
= k=6

Therefore, the required value ofk is 6.

Question 27:
Find the values of k so that the function f is continuous at the indicated point.

. kx?, ifx<2
./'(_.\-):{ i atx =2

3, ifx>2

Answer
kx, ifx<2

- - - 2 .\4 —
The given function |s/( ) {3' ifx>2
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The given function f is continuous at x = 2, if f is defined at x = 2 and if the value of f at x
= 2 equals the limit of fat x = 2

It is evident that f is defined at x = 2 and f(2) =k (2) =4k
lim f(x)=lim f(x)=f(2)
= lim (kx* )= lim (3) = 4k

= kx2? =3=4k

=4k =3=4k
=4k =3

3
= k==

4

Therefore, the required value ofk s 3

Find the values of k so that the function f is continuous at the indicated point.
J/{.\' +1, ifx<m

flx)=
/(x) [cos.\'. ifx>m

alx=m

Answer

_ [ka, ifx<n
The given function is ./ (x)= lcos‘ o -

The given function f is continuous at x = p, if f is defined at x = p and if the value of f at x
= p equals the limitof fatx = p

It is evident that f is defined at x = p and f(7) = kn +1
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lim f(x)=lim f(x)= f(n)

= lim (kx+1)= lim cosx = kn+1
= kn+l=cosm=kn+l

= hkn+l==1=kn+l

2
>k=—
T

(S ]

Therefore, the required value ofkis —

Find the values of k so that the function f is continuous at the indicated point.

[l(_\' +1, ifx<5

./'(-")=1

a2 atx=35
3x-5, ifx>5

Answer
[k\' +1, ifx<5

N ~|\3.\' -5, ifx>5

f(x)

The given function f is continuous at x = 5, if f is defined at x = 5 and if the value of f at x

= 5 equals the limitof fat x =5
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It is evident that f is defined at x = 5 and /f (5) = kx+1=5k +1
lim f(x)=lim f(x)=f(5)
= lim (kx+1)= lim (3x-5) =5k +1

=5k +1=15-5=5k+1

=5k+1=10
=5 =9

9
:’>sz

5

.9
Therefore, the required value of k is =

Find the values of a and b such that the function defined by
(5, ifx<2
f(x)=qax+b,if2<x<10

21, ifx=10

is a continuous function.

Answer
5, ifx<2
f(x)=qax+b,if2<x<10

21, ifx=10

Page 42 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

It is evident that the given function f is defined at all points of the real line.
If f is a continuous function, then f is continuous at all real numbers.
In particular, f is continuous at x = 2 and x = 10
Since f is continuous at x = 2, we obtain
lim f(x)=lim f(x)=7(2)
— ‘Ii’n‘l (5)=lim (ax+b)=5
=5=2a+b=5

=2a+b=5 (1)

Since f is continuous at x = 10, we obtain
lim f(x)= lim f(x)=7(10)
y->10 y—10" :

= lim (ax+b)= lim (21)=21
y—>10 y— 10"

=10a+b=21=21

= 10a+b=21 (2)

On subtracting equation (1) from equation (2), we obtain

8a = 16

By putting a = 2 in equation (1), we obtain
2x2+b=5

=24+b=5
=>b=1
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Therefore, the values of a and b for which f is a continuous function are 2 and 1

respectively.

Show that the function defined by f (x) = cos (x?) is a continuous function.

Answer

The given function is f (x) = cos (x?)

This function f is defined for every real humber and f can be written as the composition

of two functions as,
f=goh, where g (x) = cos x and h (x) = x?

: (goh)(x)=g(h(x))=g(x")= cos(x’ )= /(\)}
It has to be first proved that g (x) = cos x and h (x) = x? are continuous functions.
It is evident that g is defined for every real number.
Let ¢ be a real number.

Then, g (c) = cos ¢
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Putx=c+h
Ifx—>c, thenh—0
limg(x)=limcosx
X—¢ ¥ ¢

=limcos(c+h)

fi—l)

= lim [cosccos h—sinc¢sin h]

fi—»)
=limcosccos/i—limsincsin A
==Y fr—0
=cosccosO—sinesin0
=coscx|—sinex0
= oS¢

slimg(x)=g(c¢)

N>

Therefore, g (x) = cos x is continuous function.
h (x) = x?

Clearly, h is defined for every real number.

Let k be a real number, then h (k) = k?

limA(x)=limx® =&

Iin;h(x)= h(k)
Therefore, h is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is

continuous at c and if f is continuous at g (c), then (f o g) is continuous at c.

-

Therefore, f(x)=(goh)(x)= cos(.\‘ )is a continuous function.
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Show that the f(x)= cos "-l function defined by  is a continuous
function. S

Answer

£ (x)=|cosx|
The given function
is

This function f is defined for every real humber and f can be written as the composition

of two functions as,

f=goh, where &(X)= |x| and A(x)=cosx
I: (goh)(x)=g(h(x))=g(cosx)=|cosx|= f(\)]

It has to be first proved that g(x)= |‘ and h(x)=cosx are continuous functions.
2(x)=|x| can be written as
[—x. ifx<0

g(-"):l_\», ifx=0

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:
Ife <0, then g(c)=-c and lim g(x)= I\,iﬂ?(_-") =-c
I‘ilp g(x)=g(c)

Therefore, g is continuc;us at all points x, such that x < 0

Case II:

If¢ >0, theng(c)=c and limg(x)=limx=c

limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
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Case III:
If ¢ =0, theng(c)=g(0)=0
lim g(x)=lim(-x)=0
y—>{) vl
lim g(x)=lim(x)=0
x—l) . ¥—
sdim g(x) = lim (x) = g(0)
r—»() : 0" " ’
Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.

h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Put x =c+ h
If x - c,thenh —-0h(c) =cosc

limA(x)=limcos x

L=+

= lim COS((‘-L— h)

fi—0

= lim [c05c-cos h—sincsin h]

Je=a()

=limcosccosi—limsinesinh

fe—() fa—0)
=cosccos—sinesin0
=coscxl-sinex(
=cosc
sAimh(x)=h(c)
X=C
Therefore, h (x) = cos x is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is

continuous at ¢ and if f is continuous at g (c), then (f o g) is continuous at c.

Therefore, f(x)=(goh)(x)=g(h(x))= g(cosx)=|cosx|is a continuous function.
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Examine that Si"}"l
Answer

Let f(x)=sin|x| _ _
is a continuous function.

This function f is defined for every real number and f can be written as the composition

of two functions as,

f=goh, where &(x)=|x| and h(x)=sinx

[ (goh)(x)= g(h(x)) = g(sinx) =|sinx|= /(\)]

It has to be proved first thatg(-“) = |"' and /’(_-\') =SINX are continuous functions.
2(x)=|x| can be written as
[—x. ifx<0

g(-\')zl_\,‘ ifx>0

Clearly, g is defined for all real numbers.
Let c be a real number.

Case I:
[fe <0, then g(¢)=~c and I‘l_lz‘l g(x)= |‘_i_l]1(—.\‘) =—c
l‘irp g(x)=g(c)

Therefore, g is continuous at all points x, such that x < 0

Case II:
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Ifc>0, theng(c)=c and limg(x)=limx=c
~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

If ¢ =0, theng(c)=g(0)=0
lim g(x)=lim(-x)=0

lim g(x)=lim(x)=0
) ) x—

x>

~lim g(x) = lim (x) = £(0)

= :

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

h (x) = sin x

It is evident that h (x) = sin x is defined for every real number.
Let c be a real number. Put x = c + k

Ifx ->c,thenk—-0h (c) =sinc
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h(c)=sinc
limh(x)= lim sin x

=limsin(c+k)

A0

=lim [smc cos k + coscsin k]
kD

= l“?l(Si" ccosk)+ !}il}g(coscsin k)
=sinc¢cos0+coscsin0
=sinc+0
=sinc¢
s l\il)n h(x)=gl(e)
Therefore, h is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at c, if g is

continuous at c and if f is continuous at g (c), then (f o g) is continuous at c.

Therefore, f(x)=(goh)(x)=g(h(x))=g(sinx)=

Find all the points of discontinuity of f defined by /(\) :|.\'|—|,x'+l .

Answer

The given function is / —| |-‘\ +1
The two functions, g and h, are defined as

g(x)=|x

Then, f=g - h

and i (x)=|x+1|

The continuity of g and h is examined first.
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g(x)= |\| can be written as
(x) [—.r, ifx<0
x)=

8 1\ ifx=>0

Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:

Ifc <0, then g(¢)=-c and lim g(x)=lim(-x)=-c
l‘iT g(x)=g(c)

Therefore, g is continuous at all points x, such that x < 0
Case II:

Ifc>0, theng(c)=cand limg(x)=limx=c¢
limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

X»g

If ¢ =0, then g(c)=g(0)=0
]12\ g(x)= lim (=x)=0

i ¢(x)= i () =0
i g(x) = lim ()= £(0)

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.
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h(x)=|x+1| can be written as
—(x+1), if, x <1
h(x)= (d) » '
' x+1, ifx=-1

Clearly, h is defined for every real number.
Let c be a real number.

Case I:
If ¢ <~1, then h(c)=~(c+1) and limh(x) =lim[~(x+1) |=~(c+1)
<. lim h(x)=h(c) |

Therefore, h is continuous at all points x, such that x < —1

Case II:

Ife¢ > -1, then h(c)=c+1and limh(x)=lim(x+1)=c+1

s lim h(.\') = h(C) |

Therefore, h is continuous at all points x, such that x > -1
Case III:

If ¢ =—1, then h(c)=h(-1)=-1+1=0

lim A(x)= lim [—(.\'+I)J=—(—l+l)=0

y——I| x—-1

lim A(x)= lim (x+1)=(-1+1)=0

x=——1" x—-1'

lm} h(x)= l,'m, h(x)=h(-1)

Therefore, h is continuous at x = -1
From the above three observations, it can be concluded that h is continuous at all

points of the real line. g and h are continuous functions. Therefore, f = g — h is also a

continuous function.
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Therefore, f has no point of discontinuity.

Differentiate the functions with respect tox.

sin(x* +5)

Answer
Letf(x)= sin(,\-“ +5,)' u(x)=x*+5, and v(¢)=sint
Then, (vou)(x)=v(u(x))= v(,\': +5) =tan(.\': f 5) = £(x)

Thus, f is a composite of two functions.
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Putr=u(x)=x"+5

Then, we obtain

%‘l: = —g;(sint) = cos =cos(x + 5)

da d; , ds d :

—=—(x"+5)=—(x")+—(5)=2x+0=2x

dx ti\‘( ) afr( ) dx( )

Therefore, by chain rule, i = ﬂ ﬂ &= cos(.\'l +5)>< 2x = 2xc0s (x: + 5)
dx dt dx

Alternate method

i_[sin(x’ +5)] = cos(x’ +5)-i(.r3 +5)

dx dx
s d7 .. ; AP
—LOS(.\‘ +5) [i(x‘)+ i(b)jl
=cos(r"+5) [2x+0]
=2\’cos(x“ +5)
Question 2:

Differentiate the functions with respect to x.

cos(sin x)

Answer
Let /'(x)=cos(sinx),u(x)=sinx, and v(r) = cost
Then, (vou)(x)=v(u(x))=v(sinx)=cos(sinx)= f(x)

Thus, f is a composite function of two functions.

Page 54 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

Putt = u (x) = sin x

dv d ; e
= [cost]=—sm1 = —sin(sinx)

dt
di d
— =—(sinx)=cosx
dx dx

df dv dl G e {45
By chain rule,—~ = — = —sin(sinx)-cos x = —cosxsin(sinx)
rdy d\

Alternate method

cos(sinx) |=-smn(sinx -d sinx)=-sm(sinx)-cosx=-cosxsin(sinx
')
dx

Question 3:

Differentiate the functions with respect tox.

sin{ax+b)

Answer

Let f'(x)=sin(ax+b), u(x)=ax+b, and v(¢)=sint
Then, (vou)(x)=v(u(x))=v(ax+b)=sin(ax+b)= f(x)
Thus, f is a composite function of two functions,u and v.
Putt=u(x)=ax+b

Therefore,

dv d

— sint)=cost=cos(ax+b

dt dr( ) ( )

dar d d d
—=—/(ax+b)=—/(ax)+—(b)=a+0=a
dx dx( ) a!\-( ) (l\'( )

Hence, by chain rule, we obtain

(—IZ (—h— ﬂ —cos(ax . b) a= acm(m + h)
dx dt dx

Alternate method
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;—i[sin(ax+b):| = cos(ax+b).%(ax+b)

=cos(ax+b) -li%(a\')+ %(b)}
=cos(ax+b).(a+0)

=a C05(ax+b)

Question 4:

Differentiate the functions with respect tox.

sec(tan ( \[;))

Answer
Let f(x)= sec(tan \/;),u(.\') =Jx,v(r)=tant,and w(s) =secs
Then, (wovou)(x) = w[v(u(x))] = w[v(v';)] B w(tan \/:) = scc(tan \/;) = f(x)
Thus, f is a composite function of three functions, u, v, and w.
Put s =v(r)=tans and ¢ = u(x) = Jx
dw d

Then, = ds(sccs)zsecs tans =sec(tant).tan(tanr)  [s=tant]
= sec( tan x ) - tan tan x ) [£=x]

Z—f:;—i(tant):scc?‘r:sccz\/;

d _d(—_d !] 1 1

d\'_ci\'(\/;)—dx[x ) 2 ’ T2V

Hence, by chain rule, we obtain
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dt  dw ¢h dl
dx  ds d! d\‘

=sec(lan \/;)-lan(lan \G)xseC: \/.;x ’)\l/_
, 2Jx

2 2\1/: sec” \/x scc(tan v(;)tan (lan J;)

sec’ \/.\_'sec(lan \/;)tan (lan \,/:)

s 754 _

Alternate method

: [%ec(ldn \/_)]—“’u tan ‘G) “"(l"" ‘/;) '(1an "-)

dx

(

e Rl Ll B

= sec( tan x ) tan (tan Vx ). scc:(\'q).z\lj;
i i

SecC

Question 5:

Differentiate the functions with respect to x.
sin(ax+b)

cos(cx+d)

Answer
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sin(ax+b) _g(x)

= h(x) , Where g (x) = sin (ax + b) and

. . - 3 X)=
The given function is / (x) cos(cx+d)

h (x) = cos (cx + d)
, gh—-gh'
Sk f — g 35.__
h

Consider g (x)=sin(ax+b)
Let u(x)=ax+b,v(r)=sint

Then, (vou)(x)= v(u(.\')) =v(ax+b)=sin(ax+b)=g(x)

. g is a composite function of two functions, u and v.

Putt=u(x)=ax+b

% :;’ (sint)=cost = cos(ax+b)

dt d d
—=—(ax+b)=—(ax)+—(b)=a+0=
dx dr( sl dr(a\) d'c()) ?

Therefore, by chain rule, we obtain

I LA ﬂ—cm(m +b)-a=acos(ax+5b)
dx dt dx
d)

Consider /1(x) = cos(ex +
Let p(x)=cx+d. g(y)=cosy

Then.(gop)(x)=gq(p(x))=g(cx+d)=cos(cx+d)=h(x)

~h is a composite function of two functions, p and g.
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Puty =p(x) =cx+d

_Z%I‘_ s di}:(cos_‘,') = —sin y= —Sin((,'.\'*'d)
dy _d d i

2 " ] — X l L
dx dr(“+( ) d,\‘(u)Jr d.l‘(( )=

Therefore, by chain rule, we obtain
W = dh _dq dy

“F B —sin(ex+d)xe=-csin(ex+d)

, acos(ax+b)-cos(cx+d)—sin(ax+b)|-csin(cx+d)}
[(:os(c.vc+d)]2

_acos(ax+b) vodinfaciB); sin(cx+d) y I

cos(ex+d) cos(ex+d) cos(ex+d)

= acos(ax+b)sec(ex+d)+esin(ax+b)tan(cx+d)sec(cx+d)

Question 6:
Differentiate the functions with respect to x.

cos.x“.sin"(x’;)
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Answer

The given function iscosx’.sin® (x")

_d_ I_COS"'} -sinl (\*)J . Sin” (.\‘“)x Ad_ (cosx,; ) + cos_\-“ » »d_ (sin: (-“5 )J

dx dx dx -
a 5 . 3 (1 3 3 . 5 d i' o 5
=Sin (.\' )K(*Sln.‘( )X e (.\' )~§ cosx” % 2sin (.\' ) = | Smnx
X dy -
s 3 2f S\ L2, .8 3 s d o«
=-=SInx sin (.\' ) XX + 2 SINX COSX -COSX X / (.\' )
’ ax

2 .2 3 .2 5 . 5 5 3
=—3x°sinx’ -sin (.\‘ )+25|n.\' cosx” cosx -x5x*

=10x* sinx’ cosx” cosx” — 3x’ sinx’ sin’ (.\")

Question 7:

Differentiate the functions with respect to x.

2,[cot(x?)

Answer
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- fsin(x:) W 5
cos(.\'z) sin:(x") Lo

B Jcos x2 Jsin x* sin x?
—2\/5.\'
. 2 < B 2
\}ZSlnx‘ CcosSx” sinx”
—2~/?_.x
sin x°/sin 2x°

Question 8:

Differentiate the functions with respect to x.
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cos(\[.\_')
Answer
Letf(x) LOS(\/T)
Also, let u(x)=+/x
And,v(7) = cost
Then, (vou)(x) = v(u(x))
()
= COs \/:
= f(x)

Clearly, f is a composite function of two functions, u and v, such that

t=u(x)=x
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dx dx dx

, 1 af
o s () & [ b ] 12

And, v —(cost)=—sint

drdit |
=- sin(\/;)

By using chain rule, we obtain
dr dv. dt
dv dt dx
[~ 1
= —sin
() 5z

- —‘:)T“n(\/—)

sin()
=—- 2\/: /
Alternate method

4 cos (V)] = -sin( V%)L (V&)

dx dx
{ 1
——sin(\/;)x—1| \-]
(i\'\
] _I
=—SinVJxx—x ?
)

B —sin\/;
2Jx

Question 9:

Page 63 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

Prove that the function f given by

f(x)= |-"‘|I~ x € R js notdifferentiable at x = 1.

Answer

The given function is / (X )=|x-1, xeR
It is known that a function f is differentiable at a point x = c in its domain if both

(e+h)-1(c (e+h)-f(c
lim /( ) ‘/( ) and lim ‘/( ) f( )are finite and equal.
hQ h h=0 h
To check the differentiability of the given function at x = 1,
consider the left hand limit offatx = 1
(1+h)=f(1 1+h-1-1-1
lim'/( ) "():lim| . | ‘
h-() h ] h

) 0 .
= lim *—— = lim — (h<0= ‘Iz =—h)

Consider the right hand limit of fat x =1

1+/ ] N+h-1{-|1-1
lim - fALER)=f().. R [Tk ksl
h—0' h h—0’ h
h—0 ‘
= Iim|] = Iimﬁ (lz>():>;h|=h)

-0’ h h—0" h

=]

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x =
1
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Prove that the greatest integer function defined by f'(x)= [x],() <x<3is not
differentiable at x = 1 and x = 2.

Answer

The given function f is / [ ] 0<x<3

It is known that a function f is differentiable at a point x = c in its domain if both

. fle+h)-f(c . fle+h)-f(ec)
I!lm , ) and '!IE“ ( h ( are finite and equal.

To check the differentiability of the given function at x = 1, consider the left hand limit of f

atx =1
(1+h)- (1 1+ 4 |
lim'/( ) '7()—1ml ”] []
h—{) ] 10
0-1 -1
=lim—=lim—=w
0" b0 h

Consider the right hand limit of fatx =1

/(I+h) /(1) — [I+h] [1]

h a(l 1 fr—l)’

= lim l;] =lim0=0

Jr—0 1 h—0"

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x
=1

To check the differentiability of the given function at x = 2, consider the left hand limit
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offatx =2
(2+h)- £(2 2+ h|-|2
lim f(2+h) /2) = lim m
h—) h h—=) h
o 1=2 0 0 —1
= lim - =lim =00

Sl I) f—l) l]
Consider the right hand limit of fatx =1
1@eh)-1 () [2+hl-[2]
h

lim = |lim
h—0 h h—-0"

=lim=—==1im0=0

S0 7 =0

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x =

2
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dy

Find 4 ;
2x+3y=sinx

Answer

The given relationship is 2X +3y =sinx

Differentiating this relationship with respect tox, we obtain

f—I‘(Z.\% 3y)= (—/‘(sinx')
dx dx

= d (2x)+ d (3y)=cosx
dx Todx :

dy
=243 —=—=Ccosx
dx
dy
3—=cosx-2
dx

d_\‘
Find —,~

dx
2x+3y=siny
Answer

The given relationship is 2x+3y=siny

Differentiating this relationship with respect tox, we obtain

A oy Aoy o4

dx dx dx ( i )
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dy dy : :
=2+32 =cosy X [By using chain rule|
dx dx
dy
= 2=(cosy-3)—
dx
dy 2

dx cosy-3

Question 3:
dy

Find ;/““

ax+by® =cosy

Answer

The given relationship is ax+by” =cosy

Differentiating this relationship with respect tox, we obtain
4
dx

d o d
Y+ —{ b2 V= —(cos v

a (cosy) (1)

dx

dii.a
=0 +b£(_\-" ) =

d 5 dy d . dy
i i i —(y ) =2y—=— ~—(cos y)=~-sin y— w2
Using chain rule, we obtain d\'(' ) e and d\'( - ) e ( )

From (1) and (2), we obtain

dy . dy
a+bx2y—=-siny—
dx dx
. dy
= (2by+siny)—=-a
dx
Cdy —a

dx  2by+siny
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Question 4:
dy

Find ‘—,:

xy+y’ =tanx+y
Answer

The given relationship is XY+ )" =tanx+y

Differentiating this relationship with respect tox, we obtain

%(.\'y +y)= %( tanx+ )

dx
dy d; d dy
=> Xy )+—{y )=—(tanx)+—
dr( S ) dx ( ) dr( ) dx
d dy dy , dy : ;
=|y—(x)+x—=—|[+2y—=sec’ x+— [Usmg product rule and chain rule]
dx dx dx dx
(I'V dy 3 (1}-‘
= pl+x.—+2y—=sec’ x+——
: de " odx dx

=(x+2y- l)(—;l =sec’ x -y
dx

_dy  sec’x-y

Ty (x+2y-1)

Question 5:
. d}‘
Find o

X 4+xp+y° =100

Answer
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The given relationship is ¥ +X+3" =100

Differentiating this relationship with respect tox, we obtain

= (.\': +.(1-‘+_\*:)= (I.(IOO)

dx dXx

d; s d d

LY L S U G (o,

ol e O
= 2x+| ) d (x)+x- P, 2y Y _o [ Using product rule and chain rule]

dx dx dx
=2x+y-1+x- +2vdy:0
X dx

dy
= x+y+(x+2y) 2 =0

dx
Ldy  2x+y

dx x+2y

Question 6:
d\‘

Find -
dx
X +x’y+xt+y' =81

Answer
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The given relationship is ¥ +X V+xy" +y =8I

Differentiating this relationship with respect tox, we obtain

({ 2 3 3 2 (I
4 (F + Py + 1 +3 )= (81
(\ +XTY+XY +) ) clx‘( )

dx
d 3 / 2 d it 1 = )
= 4 ()2 (3)e L (o2} L ()=
1.2 1 2 2 /' 2 1 / 2 3 /_
=30 4|y (2) 00 D] € (g (07) o3 -0
=>“n3+|:\ 2\’+\‘dy}+[_v- 1+x-23 ‘1-"}+;‘3J’:()
dx dx dx

3 2\ dy > )
=> (x +2xy+3y° ) — + (3.\" +2xy+ y° ) =0
dx

dv —(3+2xy+)?)

dx (,\': +2xy+3)° )

Question 7:
tl'\‘

Find (—/\‘

sin” y+cosxy=m
Answer
The given relationship is $1N" V' +COSXV =T

Differentiating this relationship with respect tox, we obtain

‘i(sin: y+cos x)-') = ;i(n)

d/. , ; d o
'—");’i;(Sln .}-)+ ;l;(COS.\_}')—-O .(l)

Using chain rule, we obtain
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d o5 3 v gl : dyv
—({sin“ y}=2sin y— sSiny)=2smycos y— I i
dx(s '}) sin ) d“(s ¥)=2sin ycos ) = (2)
d ; d . - d Ay
—(cosxy)=—smmxy—(xy)=—smmxy| y—(x)+x—
dx( y) i dr( v) g [ d\'( ) (irJ
| dy y ; dy 4
=—sinxy| y.1+x—— [=—ysinxy - xsinxy— (3)
L dx dx

From (1), (2), and (3), we obtain

: dy : ; dy
2sin ycos y— = ysinxy—xsinxy— =0
dx dx

= (2sin ycos y - xsinxy) l— = ysinxy
dx

’

= ysinxy

= (sin 2y - xsinxy)
"dx

.dy _ ysinxy
dx sin2y—xsinxy

Question 8:
o dy

Find 3

sin” x+cos’ y=1

Answer

The given relationship is S ¥ *+¢os” v =1

Differentiating this relationship with respect to x, we obtain
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LR O 5 (L
a(sm x+cos’ y) dx(l)

d (. s i )
— é}(sm‘ .\') + ‘—1;(005' _v) =0

Bt (sinx)+2cos y- s (cosy)=0
dx dx

. . dy
= 2sinxcosx + 2cos y(-sin y)- _l =0
dx

) . dy
=sin2x-sin2y—=10
lx

_dy sin2x

“dx  sin2y

Question 9:

Find 2%
n dx

¢ s 22 J
y=sin -
1+ x~

Answer

: 2x
The given relationship is y = sin I(l S ]
+x°
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s

; ,( 2x ]
Y =sin -
’ 1+ x°

2x

=>siny=

1+ x
Differentiating this relationship with respect tox, we obtain

d , . d 2x
—(sin y)=— -
dx dx\ 1+ x°

dy df 2x
= cosy—=—| - (1)
dx  dx\1+x°

2x "
The function, I+l 1S of the form of e

Therefore, by quotient rule, we obtain
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sy d l >
d( 2y Jz(I+x’).:;(2,\')—2.\'-;(l;(l+x')
dre\ 1+ x° (I+x”)3

i (I+x:).2—2x-’[0+2.\'] 24204 2(“"‘2)) -(2)
(o) (e (e0)

2x

Also, Sy = |

+X
T2 2x Y
:>cos,1v'=\fl—sm'y= ]- ] -
1+ x°
w—

=J(I—x:): _ l—xi (3)

(l+.\”:) I+x

From (1), (2), and (3), we obtain

| —x? xﬂ ~ 2(|—.\':)
1+x° dx (]+_‘.2):

dy 2
= ——= —
de  1+x°
Question 10:
Find T‘
N dx
v:tanl 3\—_'\“‘ _L<\-<L
: 1-3x* \[“; ﬁ
Answer
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The given relationship (3x—x°
[ yztan‘{" -

is :
1 -3x°
1 v3,\‘—.\‘}
y=tan ~
1-3x"
3x—x’
=tany="—- (1)
-3x° ;

—

. -
3tan -~ —tan 3
It is known that, lany =

I
—
(]
—~—

2 2y
1-3tan” -
3

Comparing equations (1) and (2), we obtain

|'=

x=tan~

2

Differentiating this relationship with respect tox, we obtain

i(r):;—ltmn%J

dx dx 3
2y dy)
= l=sec” = —| =
3 dx!\3)
2y 1 d
= l=sec” == —=
3 3 dx
dy 3 3
ir - ‘c - ‘-
“ sec’”  l+tan’<
3 3
Ldy 3
dx  1+x
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0 | l".\'?
= COS
; 1422 dy
Find -~
2 (I.l'
l-x
=5 COS ) = / £
14 x~ o 1=x°
. V = COS tl ~|,0<x<l
|—tan” 2 v
7 l—x
= £ = oo A
2 ¥ +x° nswer
|+ tan ,)

The given relationship is,

On comparing L.H.S. and R.H.S. of the above relationship, we
obtain

y ; Differentiating this relationship with respect to x, we obtain
Yild [1J ¢ ( :
4 \)
2

sec” = —| = |=—
dx\ 2 dx
> ¥ l (1\’
=>sec’ —x——=1
2 2dx
dy 2
dx 2V
sec
2
dy 2
dx 2 ¥V
|+tan” -
2
_dy 1
’ - >
dx  1+x°
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o dy
Find A

. 1 I—,\"\'\
y=sin ~ |, 0<x <l

+x°

Answer

. 1-x*)
The given relationship is.} =SIn '[ 1+ J
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1+ x~

. l—x~
= s§iny=—-
1+ x°

Differentiating this relationship with respect tox, we obtain
d , . d(1-x° :
—(siny)=— > st

( ) d\'(H.\"] ()

Using chain rule, we obtain

d dv
e (sm }-’) =COS - ——
dx dx

cosy=+/l-sin’ y =

ey —(1-2) 2x
(l+.\':): LEx
N d.\‘(sm}) 1+x% dx (2)
:\,[:::z ] B (] i x‘)-(l _'Y£) _(])_ x')-(l +x‘) [Using quotient rule]
A 3 1+x

_ (14 )(—2.:)—(1’—.\-2 )-(2x)

(I+x3)-

2x-2x"-2x+2x°
(l +x° )2
= .(3)

(I +x° )2

From (1), (2), and (3), we obtain
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2x dv = —4x
1+x° dx (1 +'\,1')'1
dy -2
de  1+x°

Alternate method

. 1 l“‘ .\':
V =SsIn =
1+ x°
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= (vl +x° )sin y=1-x°

=(l1+siny)x’ =1-siny

, l=siny
>y =—
l+siny
( ARG, (.
COS = —sin*
, \ 2 2
—3 <
y .y
COS = +sin*
2 )
\ — —
) TR
COS~——sin -
2 2
= x= = <
Yo ez J
COS— +sin -
2 2
v
l—tan-
5
= x= =
v
|+tan -
2

Cic. o\
:>.r:lan| ———'—J
4 2

=)

Differentiating this relationship with respect to x, we obtain
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Class XII
LA ] m(?}._:]
dx dx 4 2
~(7{ 1J d[n ‘J
=>l=sec’| ——= |- —| ——=
4 2 x\4 2
2 ) | dy
=l=|l+tan" | ——= ||| —— —
4 2 2 dx

Question 13:

b
Find s

o 2x
V= CO0s ~l,—l<x<l
I+x° )

Answer
rg ,) )

|
The given relationship is.V = ¢0S Ll*" 3
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o 2x
V=Cos -
l+x°

2x

= Cos )y = -
1+ x~

Differentiating this relationship with respect tox, we obtain

B ey ( 2x ]

dx Z 1+x7

(l+)«';‘)'§

= —siny-—=
dx

Page 83 of 191
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Class XII
Question 14:
Find J;
oo 3 1 1
y=sin '(Zx\/l—x'). ——m L=
V2 V2
Answer
. 1 2

The given relationship is.V = SIn (2.Nl—x )

y=sin"' (2.\‘\)1 ~x° )

Differentiating this relationship with respect to x, we obtain
B dx}

=siny=2x\yl-x
'1 ——
dx

dy _ d | oyl =
cos_‘-—-—Q{x——dr(\/l X )+\/l
2% +1=x }

dx
=5 l—sin:y£=2 z -
3 2 \/I—x‘
—xz+l—x:}

dx
:>\/l—(2r |—x )_ﬂ'—Z
Li\' ]..\ﬂ
> A () -2 2
dx | —x°
2 dy 1=2x? |
=1 - =7
= /(1-2x) = -[ I—sz
W\ ) 1-2x?
=(1-2x")—=2
(=2') -2 122
il-l’- 2
dx VI-x?
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o dy
Find 3
| ] |
V = Sec - O<x<—
’ 2x -1 /2
Answer

|
i i ip iV = sec ( >
The given relationship is. (2% - IJ
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|
2x* -1

= cosy=2x" -1

=>secy =

.
= 2x" =l+cosy

d d )
—(x)=—]| cos:
dx dx

2 ‘dx
-1 1 dy
— - - ; i
sin?.  “ dx
2
h -2 -2
= l = v = — -
dx 5
sin b 2.
> \}l cos 5
ﬂ_ -2
(i\ \Jl == _\-2
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Differentiate the following w.r.t. x:

X
e

sin x
Answer
e’
LetV="T—"
sinx

By using the quotient rule, we obtain

dy _

i

sinx d (:e"')—e‘ : (sinx)

dx dx

dx

sin” x

sinx.(e')—e"(cosx)

€' (sinx—cosx)

sin” x

JxEnmnel

sin” x

Differentiate the following w.r.t. x:
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SN x

€

Answer

|
sin X

LetV=¢€

By using the chain rule, we obtain
(/‘~ (/ sin I'l
B4 (o)

dv  dx
f!_l_ —fin 'x 'd*(\ln -1 ‘_)
dx dx
o ,ﬂ" X l -
Ji=x2
- e\in 'y
\},I udi .\‘:
I 5 )('n X
L. xe(-11)
dx \“ I _\':

Show that the function given by f(x) = e®¥is strictly increasing on R.

Answer

Letx; and x, pe any two numbers inR.
Then, we have:

x;p <X, = 2 dx et gt (x )< f(x;)

Hence, f is strictly increasing on R.
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Differentiate the following w.r.t. x:
e

Answer

Let V= ¢

By using the chain rule, we obtain

.

dy d ("‘- .)2("( d

— = ‘—(.\" ) =e" 3x* =3x°¢
dx dx /

Differentiate the following w.r.t. x:

sin(tan e )

Answer
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Let V= sin(tan Ve )

By using the chain rule, we obtain

ﬂ:i[sin(tan’ ' e”)]

dx dx
:cos(tan e ")-:{—{(tan e )
fx
: ] d
- t 1 > X : o
cos( an e ) lo(e"‘)~ = (( )
cos(tan"e"‘) e

e’ cos(tun" cf")

= 2% X(_I)

l+e

—e " cos(tan”' ™" )

)
1+e™

Question 5:

Differentiate the following w.r.t. x:
log(cose")

Answer
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Let V= log(cos e' )

By using the chain rule, we obtain
dv_d

log(cose’
3o Llog(cose’) ]

dx dx

1 d
= - -—(cos e")
cose” dx

il _-(—sine“)-»d-(c")

cose’ dx

—-sine* |
- .‘)'

cose’
X X X 7[
=—¢"tane’,e" #(2n+1)=,neN
2
Question 6:
Differentiate the following w.r.t. x:
e*+e" +..+e

Answer

d ¥ 2 )
—(G’ +e +..+e )
dx

/ ST 1( (AT , Y d (| ¢
L) () (o o) ()

- +[e*"‘ x%(.\-f)]+[(,~\-‘ (e )]+ o (e )},[,}x* A )}

=e" +(e‘" X 2.\')+(e"] x 3x° ) +(e"' x 4.\'3)+(e“" x5x* )
=" +2xe" +3x%e” +4xe" +5x'e"
Question 7:

Differentiate the following w.r.t. x:
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\E,.r>()

Answer

Lety=Ve™

-

A v‘.“r
Then, V =€

By differentiating this relationship with respect to x, we obtain

Y Jx

y=e
dy nod : . ¢
=2y—=¢"" —( x) [By applying the chain rulc]
dx dx
2 ‘-ﬂ = e“l"‘ l _.]
dx 2 \x
s dy eV
dx -h\/:
E dy e
dx 4 / e\‘} \/:
(1‘, ev‘.x
— —. x>0
dx 4 _“,v“i
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Differentiate the following w.r.t. x:

log(logx),x>1

Answer

Let v = log(log x)

By using the chain rule, we obtain

dyv d
—=—1/log(log x
dx d.\'I: g(log )]
1
= -—f/—(log x)
logx dx
gt
log x
1
= ,X>1
xlog x

Differentiate the following w.r.t. x:

COS X
>()

log x
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Answer
Cos X
" —|
Let log x

By using the quotient rule, we obtain

d - d
cos x ) x log x —cos x logx
izdx(c sx)xlogx—c s\xdx( 2x)
dx ( log \)
—sinxlog x —cos x x
_ X
(logx)’
—[xlog x.sin x +cos x| ,
— o x>0
x(logx)
Question 10:
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Differentiate the following w.r.t. x:

cos ( logx+eé' ) x>0

Answer

Let ¥ =cos(logx+e")

By using the chain rule, we obtain

dy ' d

— =-sin(logx+e" ). —(logx+e”

dx : (Og\ 7 ) dx(' REE )

= —sin(Ioa.r+e')'{i(l02x)+ : (")
A o) S dx

(1 A
= —gj l X )| —+ "
sin(log x+e )|\.\- e J
(1 ).
=—| —+¢ :snn(logx+e").x>0

|k X /l
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Differentiate the function with respect to x.
COS X.COS 2x.Cc0oSs 3x

Answer
Let y = cos x.cos 2x.cos 3x

Taking logarithm on both the sides, we obtain
log y = log(cos x.cos 2x.cos 3x)

= log y = log(cosx) + log(cos 2x) + log (cos 3x)

Differentiating both sides with respect tox, we obtain

1 dv 1 d | d | d
——=———(cosx)+————(cos2x) + ————(cos3x)
ydx cosx dx cos2x dx cos3x dx
dv sinx sin2x d sin3x d
= ==yl-——=——(2x)-———(3x)
dx CoSXx cos2x dx cos3x dx
. dy 4 X 5
.~ ==C0sX.c0s 2x.cos 3x [ tan x + 2 tan 2x + 3 tan 3x]
dx
Question 2:

Differentiate the function with respect to x.

\) (x—1)(x-2)
(x=3)(x-4)(x-5)

Answer

o (x-1)(x-2)
et \/(x—3)(.\‘—4)(x—5)

Taking logarithm on both the sides, we obtain
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ogv=1lo )
log y=1 8\/(x_3)(_\-_4)(_y—5)

(x-1)(x-2) ]
x=3)(x-4)(x-3)

=logy= %[Iog{(x— 1)(x—2)}—log{(x—3)(x—4)(x- 5)}]

=logy= %[log(x— l)+log(x—2)—log(x—3)—Iog(x—4_)—log(x—5)J

I
=logy=- Iog{(

Differentiating both sides with respect to x, we obtain

d 1 d

—_——(x- -2)- -3

L dy | \—I “dx s 5w
ydx 2 1 d "
’ - —(x=4)-——.—(x-5
x—4 dr( x-5 dr(‘ )

dy \[ 1 1 1 1 1 )
: —_—— + - - -
dy 2\x-1 x-2 x-3 x-4 x-5

Cdy 1 x=1)(x-2) I 1 1 1 1
Cdv \/(x—» J(x—4)(x-5 )[ - +x—2_x—3_.\'-4_.\'—5}

Question 3:

Differentiate the function with respect to x.
( log -‘_ )(ll& X
Answer

Let y = (logx)

DO X

Taking logarithm on both the sides, we obtain

log y = cos x-log(log x)

Differentiating both sides with respect tox, we obtain
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Lo i(cosx)x Iog(logx)+cos.vx‘T[Iog(log.r)]

y dx dx dx
1 dy ; d
—.—— =—sinxlog(log x)+cos x x ~—(log x)
y dx logx dx
dy ; cosx |

= — = y| —sinxlog(log x) + ——x—
dx logx «x

~,

=Y (1og \)[ — Iog('og'\-)}
xlog x

Question 4:
Differentiate the function with respect to x.

X X _ zsm x

Answer
Lety = x* —2""*

Also, let x* =w and 2°" =y
Ly=u-v

. dv _du adv

I T dx dx

u=xXx
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Taking logarithm on both the sides, we obtain
logu = xlog x

Differentiating both sides with respect tox, we obtain

| du d d
——=|—(x)xlogx+xx—(logx
u dx Ll\'( Jlog d\‘( - )-‘
du 1
= —=u| Ixlogx+ xx
dx x
as x*(logx+1)
dx
du -
= —=x"(1+logx)
dx
vV = 2sin X

Taking logarithm on both the sides with respect to x, we obtain
logv=sinx-log2

Differentiating both sides with respect tox, we obtain

1 dv diz
—-—=log2-—(sin x)
v dx dx
dv
—=vlog2cosx
dx
dh o
—=2""cosxlog2
dx
Cdy

so—=—=x"(1+logx)-2"" cosxlog2
dx
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Differentiate the function with respect to x.
(x+3) .(x+4) (x+5)’

Answer

Lety=(x+3) .(x+4) .(x+5)

4

Taking logarithm on both the sides, we obtain
logy= log(x+3>)3 +log(x+4) +log(x+5)’
= logy=2log(x+3)+3log(x+4)+4log(x+5)

Differentiating both sides with respect tox, we obtain

2 1 d d

——=2. —(x+3)+ +4)+4- xX+45
v dx x+3 (x(r )2 x+4 dx( ) x+35 d\'(x )
dy 2 3 4
=D>D—=—=y +
de T | x+3 .\'+4 x+5
dy 4
= —==(x+3 +4 +5)
dx (x J) £ )(\ [ 3 \+4 r+5]
:i{“i:(,r+3) (\+4) (\+5 2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)
dx (x+3)(x+4)(x+5)
dy :
= —=(x+3)(x+4 +5 +9x+20)4 3 x +8x+15)+4{x" +Tx+12
o (x+3)(x ) (x+5)’ [ (r x ) (\' x ) (\ x )]
.‘.ﬂ=(.t+3)(.\'+4')2(x+5)"(9.\'3+7().r+l33)
de
Question 6:

Differentiate the function with respect to x.
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Answer
1Y L]
Lety=|x+—| +x* *
X

1Y 1+
Also, let u = (.\' + ~] and v=x"
X
LV=u+v

:izdu av 1)
dx dx dx

Then, u = [.\' - l]
: X

\ X

= logu = log[.\' + —J
X

I
= logu =.vlog[.\-+—]
: X,

Differentiating both sides with respect to x, we obtain

Page 101 of 191



Cle!l du d ( I) d { I]
——=—(x)xlog| x+— |+xx—| log| x+—
u dx ait() ¢ X dx & X
1 du ] 1 d 1
= ———=Ixlog| x+— [+ xx ——| X+—
u dx X ( ) dx X
X+—
X

du ( l]
= —=u|log| x+— |+
dx x

¥ o—
-
+ =
'(_

[ [
du [ 1)‘ ( 1) ["_}]
—=[x+—| | log| x+— |+ 3
dx X X [ l)

X+—

i X
du ( 1]" ( ) .3—1}
—=|x+—| |log| x+— |+—

dx x) | x) x +1
du [ IJX'_xz— [ IJJ
—=| X+— —+log| x+—
dx Xy | Xt x

|‘lol.|
vyv=x %4

[1+1]
= logv=1log|x* *

= logv = (l +l] log x
X

Differentiating both sides with respect tox, we obtain
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I-d"— d(]+]J x log \+[I+l]--dlo'\'
v dx | dx ; £ x /) dx &

d\ ( J [ J !
logx+| 1+—
\ d\ ' %
l d\ log x
- + —+ —T
vdx ¥  x x°
dv _ | -logx+x+1
- =y = =
‘_‘t\‘ X5
) () v 21— 1o +
o d} _ ‘\ <) ( x +1 ql()‘&.\_] (3)
dx X

Therefore, from (1), (2), and (3), we obtain

dy ( IJ‘ x? -1 [ 1) "".(.rH—log.\'J
—=| X+— —+log A\'+—J +X —_—
dx x| x+1 X X<

Question 7:

Differentiate the function with respect to x.
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(logx)" + "

Answer

Lety =(logx) +x"**

Also, letu = (logx)" and v = x"*"
S y=u+v

il (1)

dx dx dx

u = (log x)*

= logu = log _(log .\')‘1

o

= logu = xlog(log x)

Differentiating both sides with respect to x, we obtain
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Ll 9 ()xtog(logx) +x- < [iog(log )]

- %:u Ixlog(logx)+x- i jr(IOL ")}
du o[ l
—=(logx | ] ez

:{ﬁ‘ (log.x) _0g(0gx)+ log x X:I

S (log x)"| log(log v)+ }

dx log x
= (:; (log x)’ k_)g__(l‘_“{lgg)%gx”]

;__ = (logx)""[1+log x.log(log x)| ~(2)
y = x"E

= logv= Iog( "‘-“')
= logv = logxlogx = (logx)’

Differentiating both sides with respect tox, we obtain

Ligw _d [(log\) ]

v dx dx
1 dv d
— =2(log x log x
~~=2(logx)-—~(logx)
dv
= —=2v(logx)-—
7 (logx)
d_‘ == 2x|u!.t Iog X
dx X
dV lo 1 E
= —=2x""".logx wit3
dx B ( )

Therefore, from (1), (2), and (3), we obtain

Page 105 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

(I" -] ) o

— =(logx 1+ log x.log(log x) |+ 2x"** " - log x
; g g g(log g
dx

Differentiate the function with respect to x.
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Answer
Lety = (sinx)" +sin”' Vx
Also, let u = (sin x)" and v=sin"' Jx

LYy=u+v

A a o i)

dx  dv dx
u=(sinx)’
= logu = log(sinx)"
= logu = xlog(sin x)

Differentiating both sides with respect to x, we obtain

ldu d L d ;
R Z;(\)x log (sin x)+xx2;[log(sm x)]
=5 % = u|:l -log(sinx)+x- P -dix-(sin \)}

:ﬂ=(sin.\‘)"[log(sin.\‘)+ 3 -cosx}

dx sinx
du . X .

= (sinx) (xcotx+logsin x) «(2)
@

v=sin"'Jx

Differentiating both sides with respect tox, we obtain

#z__L_Jaﬁ)

dv_ 11
de J1-x 2Jx
SN (3)

Therefore, from (1), (2), and (3), we obtain

&ANX—X

b (sinx)" (xcotx+logsinx)+ ——— (_]
dx . ’
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Question 9:

Differentiate the function with respect tox.

_Sin x

x* 4 (sin .t)m 3

Answer

: > . Cosx
Lety = x™" +(sinx)

_sinx

. Y COsx
Also, let w=x""" and v= (sm .\') :

LYy=u+v
dy du dv

du  dv (1)

dx - dx  dx

_Sinx

U=Xx

= logu = log(x™"")

= logu =sinxlogx

Differentiating both sides with respect tox, we obtain
1 di Wz : 1

= = (sinx)-log x +sin x-——(log x)

udx dx : dx

du . I
= —=u|cosxlogx+sinx-—

dx X

du sin.x
=>—=x""|cosxlogx + «(2)

dx ) x

V= (Sin X )cnn
= lOg Y= ]Og (Sin .‘_)cus_x
= logv = cos x log(sin x)

Differentiating both sides with respect tox, we obtain
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ldv d ; d :
—— =—(cosx)xlog(sinx)+cosxx E[Iog(sm \)]

vdx dx
d (sin x)}

dv ; .
= — =vy| -sinx.log(sinx)+cosx-—
X sinx dx

COs ¥

= 1A (sinx)

; : Cos X
—sinxlogsin x + ——cos X
dx

SInx

d“. - COs .y . .
D= (sinx)™" [~sin xlogsin x+cot xcos x|

= Z_‘ =(sinx)"" [cot xcos x—sin xlogsin x|
X

From (1), (2), and (3), we obtain

dl" s sin x . CO8 X : .
i x*"*| cosxlogx+-——— [+(sinx)"" [cosxcotx—sinxlogsin x|
X x

Question 10:
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Differentiate the function with respect to x.

‘_u.u,\,\ .\.: + l
x =1
Answer
i X ¥
Lety=x"" <
x =1
x* 41
Also, let u =x""""" and v=—
x =1
Ly=u+v
dy du dv
dy_du dv (1)

dv  dx  dx

_XCOSX

U =X
= logu = Iog(.\"“‘“' )
= logu = xcos x log x

Differentiating both sides with respect tox, we obtain
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L, a (x)-cosx-logx+x- d (cosx)-logx +xcosx- . (logx)

udx dx dx dx
u . 1
= —=u|l-cosx-logx+x-(—sinx)logx+xcosx-—
dx X
du e .
=% e X" (cos xlog x — xsin xlog x + cos x)
dx
du Xoosy )
— =™ [cosx(l+Iog,\')—xsmxlog.\'] :.{2)
dx
x4
x: =1

= logv= Iog(.\'z + I)— Iog(x: - l)

Differentiating both sides with respect tox, we obtain
ldv  2x B 2x
vae x+1 x -1

. 2x(x1—l)—2x(x:+l)

& | ()

ﬂ B x* +1 " ~4x

de  x* -1 (xl +l)(x2 —l)

dx (,\'3 —l)
From (1), (2), and (3), we obtain
L T [cosx(l +log x) - xsin x log .\'] - L
dx (_‘.3 a2 |)"
Question 11:

Differentiate the function with respect to x.
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1
(xcosx) +(xsinx)s
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} I
Lety=(xcosx) +(xsinx):

I
Also. let u = (xcos x')'l and v = (xsinx)-

Ly=u+v
:>£=di+£ (1)
dv dx dx

u=(xcosx)"
X
= logu = log(xcosx)
= logu = xlog(xcosx)
= logu = x[log x+logcos x]
= logu = xlog x + xlogcos x

Differentiating both sides with respect tox, we obtain

| du d d
——=—/(xlogx)+—(xlogcos:
u dx dr(x ex) d.\'(Y B8

= _ quogx-%(x)+x-%(‘02-‘)}+{'°g°°‘”'%(X)H'%(Iogcosx)ﬂ

dx
LI (cos A)H
cosx dx
du

= = (xcosx) [(log X+ I)+{Iogcosx+T;-(—sin A-)H

du x |
:;:(xcosx) Iog.\'-l+x~: +4logcosx-1+x-

= % = (xcos x)“' [(l +log x)+ (IOgcos <t A)]

= j: =(xcosx)v"[| - xtanx+(logx+ logcosx):l
:.»ZZ =(xcosx)"[]—xlanx+log(xcosx)] 2)
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v=(xsin 1):

= logv = log(xsin \)lr

= logv= lrlog(xsin x)

= logv = lr(log x+logsinx)

1 1 ;
= logv=—logx+—logsinx
x x

Differentiating both sides with respect tox, we obtain

Chapter 5 - Continuity and Differentiability Maths

1)+l.‘71{log(sin.w-)}}

X

X &

Lay.. d(llo’\'Jn&d ]lo (%in\')
vdy delx & dx| x ot i
ldv [ d{1) 1 d . df
——=|logx-—| — |+——(logx) |+| log(sinx)-—
vdy | & d.\‘(.\‘) X a'.r( b\):| |: b( ‘) (I.\f(
ldv [ 1Y 11 _ 1Y 1 1 d,.
=>——=|logx:| —— |+—— |[+]| log(sinx):| — |[+—-———(sinx
vdex | g ( \J x x:| [ e( )[ .\"J X sinx d.\'( )}
) log (sinx
1ﬂ=i,(l—log.r)+[— !’(, \)+ ] -cos.v}
vdx x° X xsinx
, WE ~loex ~I Inx)+. t X
Dj — (st I l(zg,.\ 3 og(sin 12)+ Y CO \]

X X X

= L= (-\’Sin_v)i [ 1-logx—log (fi“ x)+xcot .\':|
dx i @

S (..\.‘Sin..\‘).l\' ! _]og("‘Si“f)*'-\'COl X:|
dx 2

From (1), (2), and (3), we obtain

(1)" x P
— = I—xt ¢+ | Y +1 X))
i (YCOSX) [ X tan x Og(XCOS \')] (\'Sln \‘)

x

! [.\'cot x+1-log(xsin t)jl
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) dy :
Find — of function.
dx
x'+yt =]
Answer
The given function isx’ + y" =1

LetxY=uandy*=v
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Then, the function becomesu + v =1

LR (1)
dx dx
u=x'

= logu = log(.\"")
= logu = ylogx

Differentiating both sides with respect tox, we obtain

ldl—lo'r‘—i&}— v-i{(lo’\')
u dx 8’ de 7 dx -
du |: dy 1
= —=u|logx—+y-—
dx dx X
dl:.\" [log.\‘ﬂ+l) (2)
dx dx x
v=y

= logv= Iog(,v")
= logv=xlogy

Differentiating both sides with respect tox, we obtain

| dv ¢ e
——=log y—(x)+x-—(logy
— =logy-—(x)+x-—(logy)
dv 1 dy
= —=v|logy-1+x-—-—
dx i y dx
B o
X ydx

From (1), (2), and (3), we obtain
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f
K dy vy . xdy)
x” | log x—=—+= J+ Y| logy+——|=0
\ ax x \ ydx )
. ndy ‘
r—® (.\"‘ log x + xy* ') — = - (_\'.\"‘ "+ log _\’)
dx
dy o+ ytlogy
Cdx x’ log x +xy™'
dy
Find
dx
x Vv
yr=x

of function.

Answer The given function is

x v

yi=x
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Taking logarithm on both the sides, we obtain
xlog y = ylogx

Differentiating both sides with respect tox, we obtain

log y- i (x)+x- L (log y)=logx- i (»)+y- ik (logx)
dx dx dx

dx i
| dy dy 1
=>logy-l+x-—-—=—=logx-—+y-—
y dx dx X
x dy dv y
=logy+——=logx—+=
v dx dce x
{ x ldy ¥y
=>|—-logx |=—===logy
\y dx x
x-ylogx |dy y-xlogy
> —|—_——
y dx X

Ldy _r/}'—,\'log_l'
T .\'L.V—)’Iogx

Question 14:

dy
Find —- of function.
dx

(cosx)” =(cosy)

Answer
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The given function is(cosx) =(cos y)
Taking logarithm on both the sides, we obtain
vlogcosx = xlogcos y

Differentiating both sides, we obtain

dy d d d
logcosx-——+ y-—(log cos x) = log cos y-—(x) +x-—(log cos y)
ix dx dx dx

dy d 1 d
= logcosx—+ y- ~—(cosx)=logcosy-1+x-————(cosy)
dx cosx dx cosy dx
dv . X . dy
= log cosx — + ———(~sinx) = log cos y + ——(—sin y)- =
dx cosx cosy dx
av ay
= logcosx—— ytanx =logcos y —xtan y —
dx dx

dy
= (logcosx+xtan y)—- = ytanx+logcos y
" ldx ’

_dy ytanx+logcosy

dx xtany+ logcosx

Question 15:

dy
Find —,~ of function.
dx

xy ="

Answer
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. N T =)
The given function is*V =€

Taking logarithm on both the sides, we obtain
log(xy)= Iog(("' %)

= logx+logy=(x—y)loge

= logx+logy =(x-y)xI

= logx+logy=x-y

Differentiating both sides with respect to x, we obtain

d d d dy
—(logx)+—(logy)=—(x)-—
dx( ex) dx( ey) c/.\'( ) dx

Lid b

x ydx dx

1 A

:>) I+l i:l_l

\ ¥y dx X

|(_1'+1]d_\' x-1
:>| — =

\ ¥y Jdx X
dy y(x-1)

Tdx x(y+1)

Find the derivative of the function given by /(x) = (1+x)(1 +x"‘)(vl +x* )(l +x* ) and hence

find f'(1).

Answer
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() = Y 2 RAYATS
The given relationship is-/(")"(]'”)(l'*'x )(H" )(I ek )
Taking logarithm on both the sides, we obtain

log f (x) = log(1+x)+log(! +x:)+log(| +x*)+log(1+x")

Differentiating both sides with respect tox, we obtain
1 d d d 5 d d
. (x)|=—log(1+x)+—log(1+x*)+—log(l+x")+—log(1+x*
/(%) d\‘['/(r)] dx og(l+) dx 05( : ) dx 0&( : ) dx 0&( : )

f"(.\~)=L-i(l+x)+ l1-i(l+x’)+ ! -i(l+x‘)+ I -i(l+x“)

— _I ‘.
f(x) l+x dx 1+ x° dx 1+x* dx 1+x* dx
1 1

o 7 ] 2 ¢
') '/(Y){:l+x+l+x3 \’+1+x‘ ' +l+x” ‘ ]

‘/"(_\-)=(I+.\')(l+x2)(l+.v‘)(l+.x-*)[ L, 2x | 4x} & 8x’ }

1+x 1+x° 1+x' 1+x°

g 5 ; 1 2x1 4xI® 8xI’
Hence, f (1)=(‘+‘)(‘“')(”]')(Hlx)[lu+1+x|’- +|:l‘ ™ li'“}

=16x > =120
2

Question 17:

Differentiate (.\'; -—5,\'+8)(,x" J 7.1'+9) in three ways mentioned below
(i) By using product rule.

(ii) By expanding the product to obtain a single polynomial.

(iii By logarithmic differentiation.

Do they all give the same answer?
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Answer

Lety =(x’ —5.\'+8)(.\"‘ +7x .—9)

(i)
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clletx’ =5x+8=wandx' +7x+9=v

Sy=uv
=>m o v+u-ﬁ (By using product rule)

dx  dx dx

Y _d : 2 dit
:a-a(.\' —5x+8)-(,x +7x+9)+(a —5x+8).z(x +7x+9)

= -3‘: =(2x-5)(x" +7x+9)+(x* - 5x +8)(3x° +7)

3§=2x(A‘3+7.r+9)—5(x +7x+9)+x* (3x* +7) - 5x(3x° +7)+8(3x* +7)

=>d‘ (u +14x° +18r) Sy —3)\—45+(3\' +7x° )—|5x-‘-35x+24x3+56
dx

2B 538 205 44557 52 +11
dx

(i) ¥ = (x* —5x+8)(x" +7x+9)
=x* (x'1 +7x+ 9) - 5.\‘(.\" +7x +9) + 8(.\"1 +7x+ 9)

=x +7x +9x* =5x* =35x7 —45x +8x* +56x+ 72
=x"=5x" +15x* =26x* +11x+ 72

i‘_ _(\' ~5x" +15x" ~26x° +”\,+77)
(l\' (x
_d d d d p
- ()55 ()26 () 1 ()4 )

=5x' =5x4x +15x3x* =26x2x+11x1+0
=5x* —20x" +45x° = 52x+11

(iiiy ¥ =(.x'3 —5x+8)(x" +7.\'+9)
Taking logarithm on both the sides, we obtain

log y = log(x’ —5.r+8)+ log(x"+7x+9)

Differentiating both sides with respect tox, we obtain
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ldv d b 2 d

S g log(x* —5x+8)+ = log (x" +7x+9)

ST N ST YRS P NN TRIE
ydx x"—-5x+8 dx X +7x+9 dx

:d'vz_j - I_ x(Zx—5)+ . ] x(3.x‘:+7)
dx x°—5x+8 x +7x+49

Dﬁz(f—SHS)(x"+7_x-+9) q2x-—5 . ?x:+7 ]
“ | —52+48 ¥ +7x+9

(2x=5)(x" +7x+9)+(3x" +7)(x* — 5x+8)
| '(x" -5x +8)(;\’" +7x +9) |

= i =(x* -5x+8)(x +7x+9)

= N 2.\'(,\"‘ +7x+ 9)— 5(_\" + 7x+9)+3x2 (x3 ~5x+ 8)+ 7(.\‘:‘ —5x+8)

dx
= & (2,\" +14x° +1 Sx)— 5x* —35x—-45 +(3xJ —15x* +24x° ) +(7x2 —35x+56)

dx
= @ . 5x' —20x° +45x° - 52x+11

dx

dy

From the above three observations, it can be concluded that all the results ofﬁ are
same.
Question 18:

If u, v and w are functions of x, then show that

d du dv dw
—(uv.w)=—vw+s.— w+uv.—
dx dx dx dx

in two ways-first by repeated application of product rule, second by logarithmic

differentiation.

Answer
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Let y=uvw=u(v.w)

By applying product rule, we obtain

ZI: (v u)+u —(\ u)

dx
dv  du ]— av dw . .
== VWU WV —— (Again applying product rule)
de  dx | dx dx
dv  du dv dw
== VWU — WHU-V-
de  dx dx dx

By taking logarithm on both sides of the equationV = #-¥-W we obtain
log y = logu +logv+logw

Differentiating both sides with respect tox, we obtain

1 dv d . od d ,
—= logu )+ logv)+ logw
y dx dx( gu) d.‘( ev) \‘( ew)
1 d\ dl+ld" l du
¥y d\ udx vdx w d\

dy ( ldu ldv 1 dw)
===y — =

dx ude vdrx wdx

dy ( du ldv 1 aw j
= = Y VW, +——

dx ude vde wdx

dy du dv dw
S = e s Yo WA U WA UV

dy dx dx dx
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If x and y are connected parametrically by the equation, without eliminating the

dy
parameter, find I
x=2ar*, y=at’

Answer

. . . — Ve p—
The given equations are ¥ = 2at” and y = ar

'I'hcn,é = i(?_af: ) =2a -i(t: ) =2a-2t =4at
dt dt® / dt
dy d

14):(1~%((‘):(1-4-l‘ =4art’

—=—1a
dt dt

[d) ]
cdy _\dt) 4af’ _p

oy { dc)  dat
\ (l’ J
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If x and y are connected parametrically by the equation, without eliminating the

a
dx’
X =acos O,y =bcos8

parameter, find

Answer

The given equations are x = acos8andy = b cos 6

= dx 1 g .
Then, — = c—(acos()) =a(-sin@)=-asin@
do do
L1 i(bcos()) =b(—sin@)=—-bsind
dg do '
(dy )

cdy \ dé ) _—bsin@ b
“dx (dx) -asin® a
L dé )

If x and y are connected parametrically by the equation, without eliminating the

i N
parameter, find fi. X
dx

=sint, y = cos 2t

Answer

The given equations are x = sin t and y = cos 2t
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dx d

Then, — =—(sint)=cos/
drdi
» d . i ;
L= £ (cos2r) =—sin2t-=(21) = —2sin 21
dr dt dt

dy
Cdy dt -2sin2t _ -2-2sintcost

A S S - =-4sinf
dx [d.\‘] cost cost
dt
Question 4:

If x and y are connected parametrically by the equation, without eliminating the

d\‘
parameter, find -
x=4t, y=—

!
Answer

4
x=4tandy=—
The given equations are l
2% i(41 )=4
dr dt

L_’[i]4_’(']4(_‘]4

drdr\t dr\ 1 r r
(&) G)

Ldv _\dr ) =l

Tk [dx) 4 i
dt

Question 5:
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If x and y are connected parametrically by the equation, without eliminating the

~dy
parameter, find 2

x =cosf —cos 20, y =sin@ —sin 20
Answer

The given equations areX = c0s¢ —cos26 and y = sin @ —sin 26

Then, LA (cos@-cos26)= i(cosé?) - ‘—1~(cos 26)
do do do do
= —Sinﬁ—(—Zsin.?H):Zsin 260 —-sind
D _ 4 (sing-sin20) =2 (sing) -2 (sin20)
de do do do
=cosf —2cos 26

i
cdy [ d()] _ cosf~2cos26
Cax [ dx W  2sin20-sin@

de )

Question 6:

If x and y are connected parametrically by the equation, without eliminating the

dy

parameter, find =~
dx

x=a(@-sin@), y=a(l+cosb)

Answer
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The given equations are ¥ = a(@-sin@) and y = a(l+cosb)
Then, %—u[—(())—— sin 0)} a(l—cos@)

o= 5" 15 (00s0)| e[+ (-sin0))=-asing

Q

d‘-’) b 00 0

dv_\de _salig _-._sm:zcos2 _—cos2 _-cmg

oy dx) a(l-cos@) 2sin’ (4 i 4 2
da 2 2

Question 7:

If x and y are connected parametrically by the equation, without eliminating the

dy
parameter, find D

sin’ ¢ cos’ t
= V=
Jeos 2t Jeos 2t
Answer
= K. | 3
sin’ ¢ cos’ t
.\'=J_7 and,':\/_
The given equations are cosat cos 2t
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CleThen. dx d[ sin"t]
dt dl Veos 2t

Jeos 2t -%(sin3 t)— sin’ r-%dcosm
cos 2t

Jeos 2 -3sin’ !v%(sinl)—sin’tx %.%(00521)

2\cos2t dt
cos 2t

3Jcos 2¢ -sin’ twbt—LI -2sin2¢
2Jcos 2! ( )

cos 2t
_ 3cos2¢sin’ fcost +sin’ ¢sin 21
0S 2¢+/Cc0s 2t

dv d| cos't

dr Ft[\/cos 2t ]
s,'cos2t.-‘;—1;(cosx t)—cos’ t- —‘%(\/cos 2!)

cos’t
cos2t.3cos’ t-—(cost)—cos’ 1. cos 2f
: i Bl
cos 2t
3\)cos2l.cos’r(—sinl)—cos3r-—( —2sin2r)
_ 2~/cos 21
cos 2t

—3cos2t.cos’ t.sint +cos’ £sin 2t

- cos 2t -+J/cos 2t
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dy
_dy \dt) -3cos2t.cos’tsint+cos’ fsin2t
" dx (d.\') 3cos2tsin’ 1¢cost +sin’ 7sin 2t

dt
~3c0s21.cos’ 1.sinf +cos’ 1(2sint cost)

3cos2tsin® rcost +sin’ 1 (2sint cost)

sinf cost [—3cos 2t.cost +2cos’ 1:|

sinf cos/ [3cos 2¢sint +2sin’ l]

[—3(2COS:I - l)cosl +2¢os’ t:| cos2f = (2(:0521 - l),

[3(]—25in%)sin/+25in‘l] c0521=(l—2sin:t)

~4¢os’ 1 +3cost
3sins —4sin’s

—-cos 3t cos3f =4cos’ 1 —3cost,
sin 3 sin3f = 3sint —4sin’ ¢
=—cot 3t

Question 8:

If x and y are connected parametrically by the equation, without eliminating the

Ay
parameter, find o

! 2
xX= a(cosr +logtan EJ y=asint

Answer

! i
X= u(cosl + logtan—] and y = asint
The given equations are B
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dx d

d
Then,—=a- cost )+ —| logtan
: ‘ [dl( ) a'l[ & -]J

dr

; 1 ¢ /
=d —5|n1+—,o7 Ian;
tan at 2z
X { 5
=da|-Sinf +cot 5 -Sec”

!
2
[ ‘W.,
. cos | |
=al|-sinf +—=x X—

{
2
: 1
=al-sinf+——m———
{
25m COS -

\_/‘\J\

=gl —sint+
sint
—sm 21 +1
=a
sin/
cos’
=da
sint
d , .
& a——(sint) = acost
dt dt

dy
.dy \dt) acost  sint

Tk (dx) E acos”‘l " cost
dt sint

=tant
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If x and y are connected parametrically by the equation, without eliminating the
dy
parameter, find dx

x=asecl, y=btan0
Answer

The given equations are ¥ =@sec and y =btan

Then, & =4 i(seu 0) =asecOtand

do de
) d .

d‘;zb-———(tan()):bsec'()

de do
@,

._.d\': 49 = 4506 ¢ =bsec()cot(9= bcosf) =b:~: — =bcosec9

dx [a’x] asec@tanf a acos@sind a sin® a
de

If x and y are connected parametrically by the equation, without eliminating the

dy

parameter, find o

x=a(cos@+0sind), y=a(sind@—0Ocosb)

Answer
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The given equations are X = @(cos@+0sin@) and y = a(sin @ - O cos )

Then, ﬂ=a icos()+i(05in()) =a —sin()+()i(sin0)+sin()i(0)
d do do do do

= a[—sin()+¢9c:050+sin(9] =afl cos

L a[i(sine)—i(ecosﬁ)} =a| cosf - IE’i(cosg)ﬂsos&i(é’)}
do | deo do 1" ae do
= a[cos @ +0'sin 0 —cos 0]
=afsinf
dy
dy \do) afsind
== = =tan @
dx [ dx ) af) cos @
do
Question 11:
x=va™ "', y=+a™ ", show that .
If dx X
Answer
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B ’ sin~'¢ s e ] 05t
The given equations are ¥ = Vd and y = va
x=va™ ' andy=vVa™ "'

| |
D.\'z(a"" ')3 and__vz(a““S ')2

1 .
-sin ~cos™'y
5

=>x=a’ and y = a*

1. 4
-sin "/

Consider x = a?

Taking logarithm on both the sides, we obtain
T
logx = Esm tloga

| dx | d
So——=—loga-—(sin'¢
x d 2 L dl( )

dv «x
= —==loga-

|
dr 2 ,“_[3

dx  xloga
e 2

dt 2J1-7

| 1
cos't

Then. consider y = a?

Taking logarithm on both the sides. we obtain

—
log_v=;cos tloga

Cody

12 —lloga-i(cos 1)
ydx: 2 dt
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dy )
_dy _[a’t J =
”Z—(dx‘ i

(7'1)

Hence, proved.
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Find the second order derivatives of the function.

X +3x+2
Answer
Let V= X 4+3x42

Then,
lh (/ 1‘
; ( X)+—

d\ I

t/\ d d
So—==—{(2x —(2x)+—(3)=2+0=2
dx’ d\( ) d.\( d.\'( )
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Find the second order derivatives of the function.

20

X

Answer

Let V= x*
Then,
(i]’ - (l'(

= x> ) =20x"
dx  dx

24T _ 4 (30x°) =209 (x*) =20-19- 5" = 380x"
dx  dx dx

Question 3:

Find the second order derivatives of the function.
X-COSX

Answer

Let V= X-COSX

Then,
Z—“ = :I—.Ir(.\"cosx) = cos.\'~:/—:(.x)+x%(cosx) =cosx-1+x(—sinx)=cosx—xsinx
‘(ll;‘ = % cos x—xsinx|= :l—i(cosx)— :Ti(.x'sin x)

= —sinx-{sin .l"i(.\')'f',\"i(Sin r)}

dx dx

= —sinx—(sinx+xcosx)

=—(xcosx+2sinx)
Question 4:

Find the second order derivatives of the function.
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log x
Answer
Let v =logx

Then,
2. i(Iog.\') =1
dy dx X

Ay _d(l1)_-1

de dx\x) x

Find the second order derivatives of the function.
x' log x
Answer

Let v=x logx

Then,
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‘_i‘_ = L—II:A logx] =logx- i(.\"‘ ) +x° -ﬁ(lﬂg -\’)

dx dx dx dx

2 1 2 >
=logx-3x* +x*-—=logx-3x* + x’
X

=x"(1+3logx)

‘:I‘: = :;\_ [x" (1+3log 'c)]

=(1 +3logx)-i(.\'3)+xl i(I +3log x)

dx dx

=(1+3logx)-2x+x’ 2

=2x+6xlogx+3x

Sx+6xlogx
x(5+6logx)

Question 6:
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Find the second order derivatives of the function.
e’ sinSx
Answer

Let V=¢" sin5x

dy ¢ : d d ;.
= “sinSx)=sin5x-—(e")+e" —(sinSx
dy dx (e s ) : dr( ) dx(s )
=sin5x-e"—:-e‘-C('SS.r-(l—{(S.\'):e" sinSx+e" cos5x-35
dx
=e" (sin5x+ 5¢0s 5x)
, A W R R
G [e (sinSx+ 3 u)s).x)}
= (sin5x + 5cos 5x)- d (e‘) rer- 4 (sin5x +5cos5x)
dx dx
— . d . o dpi
=(sin5x+5cos5x)e” +e"| cos5x-——(5x)+5(—sin5x)-—(5x)
' dx dx
=e"(sin5x+5cos5x)+ e* (5 cos 5x - 25sin 5x)
=e"(10cos5x —24sin5x) = 2¢" (5Scos Sx—12sin 5x)
Then,
Question 7:
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Find the second order derivatives of the function.
e cos3x
Answer

Let ¥ =e€"" cos3x

|

Then,
dy 1 i x . d
Ll (¢ - cos3x) = cos3x- (™) + e < (cos3x)
dx dx dx dx "
=cos3x-e™ -—‘1—(6x) +e" +(—sin3x)- i(33()
dx dx
- 6e cos3x —3e™ sin3x (1)
I’y d . . d : { s
L’-f-- = ’i‘-(()e"" cos3x—3e* sin 3.\') =6 — (e"‘ cos 3.\') g S (e"“ sin 3x)
dx®  dx dx dx
B 05 [ . d i 5 @ g 1
= 6-[()6‘” cos3x—3e"" sin 3.\':] -3 l sin 3x - (e & ) +e” '—(sm 3x)
[, dx dx
=36¢™ cos3x—18¢* sin3x— 3[sin 3x-e*-6+e* - cos 3x-3]
=36¢™ cos3x —18¢* sin 3x —18¢* sin 3x —9¢™* cos3x
= 27¢* cos3x —36¢°* sin3x
= Q" (3 cos3x —4sin 3.\')
Question 8:

Find the second order derivatives of the function.
tan”' x
Answer

Let ¥ =tan ' x

Then,

[Using (l)]

Page 143 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

dx  dx l+x°

.dz."_i I |_d 2\ _ (1. a2 d 2
"d\fz_ci\'(l+xl)_dr(l+x) = (1)(1+2) L (140)

Question 9:
Find the second order derivatives of the function.

log(log x)

Answer

Let v =log(logx)

Then,

dy d I d I -1
w1 locx) =——(logx)=—=(xlogx
2l o) |= o (bag) = o= (o)
242 = A (xtoga) ! = (-1)-(xlogx) 'L (xlog)

dx

- '—',-[Iogx-i(x)ﬂ'-i(log'\‘)}

(x |0g ,\'). dx dx

= ~(1+log:
=—I—:.[Iog.\'-l+x-l}=ﬂf_)
(xlogx) x]” (xlogx)’

Question 10:
Find the second order derivatives of the function.
sin(log x)

Answer
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Let y =sin(logx)

Then,
dv drp. - e cos(log x)
T dv[sm(log r)] = cos(log x) d‘_(los.\) =

_d’y _d |cos(logx)
Cdyt dx

X

X ;{i [cos(log x)] —cos(logx)- g‘ (x)

X

x-{—sin(log x)- i (log r)} ~cos(logx).1
e

2

X

~xsin (log \f)l - cos(log x)
x

-

X
~[ sin(log x) + cos (log x) |

x

Question 11:

.:5 ..__3 1 X ""—",_;'*”V:O
If ¥ =2COSX—35INX, prove that ;2
Answer
It is given that, V = 5€0s x —3sin x

Then,

Page 145 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

‘;"\ = g;(scos.\-) ; %(3sin.\') . 5%(C()s_\~) : 3%(.«“)
=5(-sinx)—3cosx =—(5sinx+3cosx)
d'y _d

So——= [-(Ssin.\-+3005x)]
dx”  dx

e s Lo
= —[5cosx+3(-sinx)]

= —[5cosx—3sinx]

Hence, proved.

Question 12:
P d’y
y=cos’ x, find ;7
Answer

It is given that, ¥ =cos ' x

IfThen, in terms of y alone.
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7 7 S W | R -
cir_d.\'(cm ")_\,l—r:_ (I \)
dz)-"_ d| i o zl
dx? _cl'\’|: (I g ) J
1 0 d 2
=-[-2 (1) -4 (1-v7)
=L x(-2%)
2/(1-x*)

4y = -0

dx (]_rz)

Y=¢0s" Xx=>x=Cosy
Putting x = cos y in equation (1), we obtain

d’y —Cos ¥

~

dx’? \f(] _ cos® y)j

d’y  —cosy
2

: \/(silf _,v)i
Sy
sin’ y

dx

—Cos y 1
= - x . 2
siny  sin‘y

-~

d V 2
= —5 =—cot y-cosec”y

dx”

Question 13:
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1f ¥ = 3cos(log x)+4sin(logx) show that X ¥, + X, +y =0
Answer
It is given that, ¥ = 3¢os(log x)+4sin(log x)

Then,
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d dr.
y = 3.E[cos(10g x)] + 4-E[sm (log x)]

=8,

—sin(logx)-gx—(logx)]+4-[cos(logx)-%(logx)]

~ ~3sin(logx) ; 4cos(logx) 4cos(logx)-3sin(logx)

* )
X X "'

_ d (4cos(logx)—3sin(logx)
U x

_ x{4 cos(log x) - 3sin(log x)}' - {4 cos(log x) - 3sin (log x)}(x)’

Y

i x j4{cos(logx)}' - 3{sin (log x)}'] - {4 cos(logx)-3sin(log x)}.l
. x j—4 sin (log x).(log x)' —3cos(log x).(log x)’] —4cos(logx)+3sin (log x)

x°

x[—‘t sin(logx). 1 _360s (logx). ]J ~4cos(logx)+3sin(logx)
x x

Y

X
_ —4sin(log x)-3cos(log x) - 4cos(log x)+3sin (log x)

X
~ —sin(log x)—7cos(logx)

2
SRR Y

. ~sin(log.x)—7cos(log x log x)-3sin(log:
:x_[ sin(logx) : cos( ogA)J+x[4cos( og x) asm(08Y)}3cos(|ogx)+4sin(log.\’)
X X

= —sin(log x)—7cos(log x)+ 4 cos(log x)—3sin (log x) + 3 cos(log x) + 4sin (log x)
=0

Hence, proved.
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Question 14:

>

"y dy
If v = Ae™ + Be™ . sho —=—(m+n)=+mny=0
y=ae €, Show dx’ dx

that Answer

It is given that, ¥ = de™ + Be™

Then,

2 4 i(ew )+ B ii—("m) =4 "’m'i(”“) +B-e" 'i(n\‘) = Ame™ + Bne™
dx dx dx dx dx

d’y d

S (Ame”“" + Bne™ ) =Am- %(e”" ) + Bn- % (e’")

e

= Ame™ 2 (mx)+ Bn-e" -%(m‘) = Am’e™ + Bn’e™
Y

d’y dy
s —(m+n)=—+mny
% dx

= Am-e"™ + Bn ™ - (m + n) -(A me™ + Bne™ ) + mn(Ae""' - Be"")

nex mx nx me x

= Am’e™ + Bn’e" — Am’e™ — Bmne"™ — Amne"™ — Bn’e™ + Amne™ + Bmne"
=()

Hence, proved.

Question 15:

1f ¥ =500e™ +600¢ ™" show that _“’;v_‘. =49y
Answer )

It is given that, V = 500e™ +600e™™

Then,
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dy _ 50(),1(}3" )+6()O.i(e =)
dx dx dx
=500-¢"™" -i(7x)+ooo-e " -i(—h‘)
dx dx
=3500e™ —4200e "
d_‘= 3500- d (e*)—4200. Z (e 7‘)
dx” dx dx

& gl 7 d
=3500-¢"".—(7x)—4200-¢"" - —(-Tx
€ d‘-( \‘) " (1.\'( ‘)

=7x%3500-¢"" +7x4200-¢7*
=49%500e™ +49x600e 7
=49(500e™ +600e ™)
=49y

Hence, proved.

Question 16:

Ife’ (x+1)=1, show d

that
Answer

dx

e (x+1)=1

The given relationship is
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e'(x+1)=1
1

= e’ =—
x+1

Taking logarithm on both the sides, we obtain
]

y = log

’ T(x+1)

Differentiating this relationship with respect to x, we obtain
dy .. 1. -1 -1

i:(.\'+I)£— —J:(x+l). - ——
dx dr\ x+1

(x+1)° x+l
\

11( ! H -1 ’ !
dx’ de\ x+1) \(x+l):’ (,\‘+I_):
dy [ 5 ¥
= e = —
dx’ .\'+IJ

d’y [dy]:
> —=| —
dx- dx

Hence, proved.

Page 152 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

IfV= (ta'T' X)E, show that (x: + I)l ¥+ Zx(.\': + I')_,v, =2
Answer

¢ 2

|
The given relationship is V Z(‘a" x)
Then,

g d :
» =2tan” x—(tan™ x)
dx

=59 =2 ¥

14 x°
= (I +.\'3)_v, =2tan"' x
Again differentiating with respect to x on both the sides. we obtain

(1427 )y, +2xy, = 2( ! )

1+ x°

= (1 +.\‘")? ¥, + 2.\'(] +x° )_v, =D

Hence, proved.

Exercise 5.8

Question 1:
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Verify Rolle’s Theorem for the functior / (X)=x"+2x-8 ,x€ [4.2]

Answer

The given function, / (X) =x"+2x—8  being a polynomial function, is continuous in [—4,
2] and is differentiable in (-4, 2).

f(-4)=(-4)" +2x(-4)-8=16-8-8=0

f(2)=(2) +2x2-8=4+4-8=0

~f(-4)=f(2)=0

= The value of f (x) at —4 and 2 coincides.

Rolle’s Theorem states that there is a point c e (—4, 2) such thatj"(c) =)

f(x)=x*+2x-8
= f'(x)=2x+2
)"(c) =0
=2c+2=0

=c=-1, wherec=-1¢(-4,2)
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Hence, Rolle’s Theorem is verified for the given function.

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say

some thing about the converse of Rolle’s Theorem from these examples?
(i) f(x)=[x] forxe[5, 9]

(i) f(x)=[x] forxe[-2, 2

iy S (x)=x"-1forxe[l, 2]

Answer

By Rolle’s Theorem, for a function j':[u. b] —- R, if
(a) f is continuous on [a, b]

(b) f is differentiable on (a, b)

(c) f(a) =f(b)

then, there exists some c € (a, b) such that f'(¢)=0

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of

the three conditions of the hypothesis.

f(x)=[x] forxe[5, 9]
(i)

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5and x = 9
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= f (x) is not continuous in [5, 9].

Also, f [3] 5 dndf [9] 9
“ f(5 )¢./‘( )

The differentiability of f in (5, 9) is checked as follows.
Let n be an integer such that n € (5, 9).

The left hand limit ot'/' atx=n is.
f(n+h)—. [n+/z] [n] n o .-l

lim =lim—=w
h—>0 h h-»n Jr _.u 1 =0 h

The right hand limit of / at x =n is,

lim 'r/r.r(’H'hr)r [”+h] [”] e lim0=0

h->0 7 n .n .u 1 h—0
Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=nNn

=f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s

Theorem.

Hence, Rolle’s Theorem is not applicable for /'(x)=[x] forx &[5, 9].
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f(x)=[x] forxe[-2, 2]
(if)

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = =2 and x = 2
= f (x) is not continuous in [-2, 2].
Also, f(-2)=[-2]=-2andf(2)=[2]=2

S f(=2)= f(2)

The differentiability of f in (=2, 2) is checked as follows.
Let n be an integer such that n e (-2, 2).

The left hand limit 0('/‘ atx =n is.

/ / =
/(n+ 1)—. [n+ :] [n] — B Lo
.~)() h }74“ =0 1 =0 h
The right hand limit ol/ atx =n is,

& / /
i L= 0)_ ]t
>0 1 ‘1 0() »() fr—{)

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

-f is not differentiable in (=2, 2).
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It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s

Theorem.

Hence, Rolle’s Theorem is not applicable for f'(x)=[x] forxe[-2, 2].
f(x)=x*-1forxe[l, 2]
(iii)

It is evident that f, being a polynomial function, is continuous in [1, 2] and is
differentiable in (1, 2).

f(1)=(1) -1=0
f(2)=(2) -1=3
() #£(2)

It is observed that f does not satisfy a condition of the hypothesis of Rolle’'s Theorem.
Hence, Rolle’s Theorem is not applicable for /'(x)=x"~1forxe[l, 2],

‘: _5.5 . . . . . o ] .

Y [ ]_) R If is a differentiable function and if [ (,\')does not vanish
prove that~/.(—5)¢ 1(5) anywhere, then

Answer

It is given that f:[-55]->R

is a differentiable function.
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Since every differentiable function is a continuous function, we obtain

(a) fis continuous on [-5, 5].

(b) f is differentiable on (-5, 5).

Therefore, by the Mean Value Theorem, there exists ¢ € (=5, 5) such that

)= L2 :)__( L f)“ )

=101"(c)=£(5)- f(-5)

It is also given that /(‘) does not vanish anywhere.
s f(e)#0

=10f"(¢)#0

= f(5)-f(-5)=0

= f(5)# f(-5)

Hence, proved.

Verify Mean Value Theorem, if f(x)= x* —4x—3in the interval[u. h], where

a= l and h = 4
Answer

The given function is f(x)=x"—4x-3
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f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4)

whose derivative is 2x — 4.

Il
+
I
=
X
s
|
vd
Il
|
)

f()=1-4x1-3=-6, f(4)
f(b)-s(a) _f(4)-/(1) -3-(-6) 3 3

b—a 4-1 3

Mean Value Theorem states that there is a point c € (1, 4) such that ‘/"((') =]

['(e)=1

= 2c—4=1

= c=2, where c-:ie(l. 4)
2 2

Hence, Mean Value Theorem is verified for the given function.

Verify Mean Value Theorem, it/ (x)=x"—5x"-3x

b = 3. Find all ¢€(L.3) for which /'(¢)=0
Answer

. . . ] (F) = o - '; -2 - “ ¥
The given function f is / (-") ¥o B in the interval [a, b], where a = 1 and
f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1, 3)

whose derivative is 3x? — 10x — 3.
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J()=r=5x1"-3x1=-7, f(3)=3"-5%x3"-3x3=-27
SB)-f(a)_fO)-1()_=27-(-1)__,
" b-a 3-1 3-1

Mean Value Theorem states that there exist a point c € (1, 3) such that f*(¢)=-10

f'le)=-10

=3¢’ -10c-3=10
=3¢’ =10c+7=0
=3c*-3¢-7c+7=0
=3c(c-1)-7(c-1)=0
=(c-1)(3¢-7)=0

7 -
=c=1, —, where (':ZG(I. 3)
3 3

g
Hence, Mean Value Theorem is verified for the given function and ¢ = 3 e(1, 3)is the

only point for which /'(¢)=0

Examine the applicability of Mean Value Theorem for all three functions given in the

above exercise 2.
Answer

Mean Value Theorem states that for a function f:[(l. b] —> R, if

(a) f is continuous on [a, b]
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(b) f is differentiable on (a, b)

f(b)-f(a)

then, there exists some c e (a, b) such that /(¢)= b
=/ |

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy
any of the two conditions of the hypothesis.

f(x)=[x] forxe[5, 9]
(i)

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuousat x = 5and x = 9

= f (x) is not continuous in [5, 9].

The differentiability of f in (5, 9) is checked as follows.

Let n be an integer such that n € (5, 9).
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The left hand limit ot'/" atx=n is.

/ +/ -
/ (n+h)—. [n 1] [n] - 1 _—
qn h han ’_.u 1 =0k
The right hand limit of / at x =n is,

3 / /
lim -/,('H' Il) [”+ 1] [”] = lin — = ||m 0=0
h->0 7 ‘0 ol h- »(l h—

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

=f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value

Theorem.

Hence, Mean Value Theorem is not applicable for f(x)=[x] forx &[5, 9].

(i) f(x) [ ]fOl'\('[ -2, ..]

It is evident that the given function f (x) is not continuous at every integral point.
In particular, f(x) is not continuous at x = =2 and x = 2

= f (x) is not continuous in [-2, 2].

The differentiability of f in (=2, 2) is checked as follows.
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Let n be an integer such that n € (-2, 2).

The left hand limit ot'/" atx=n is.

/ +/ -
/ (n+h)—. [n 1] [n] - 1 _—
qn h han ’_.u 1 =0k
The right hand limit of / at x =n is,

3 / /
lim -/,('H' Il) [”+ 1] [”] = lin — = ||m 0=0
h->0 7 ‘0 ol h- »(l h—

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

=f is not differentiable in (=2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value

Theorem.

Hence, Mean Value Theorem is not applicable for / [ ] for x (‘[ -2, 7]

(iiy f(x)=x"—1forxe[l, 2]
It is evident that f, being a polynomial function, is continuous in [1, 2] and is
differentiable in (1, 2).

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.
Hence, Mean Value Theorem is applicable for f(x) = x’—1forxe [I. 2].
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It can be proved as follows.
f(M)=r-1=0, f(2)=2*-1=3
S(b)-S(a) _f(2)-/(1) _3-0
" b-a 2-1 1

~
=D

3(':E:I.5, where I.SE[I.E]
2
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Miscellaneous Solutions

Question 1:

v - 9
(3.\" —‘).\‘+D)
Answer

Lety = (3,\‘: —Ox+5 )u

Using chain rule, we obtain

s = ~ (3.\'" -Ox + SF)“
dx dx
=9(3x* ~9x+5) - ‘Z (3% -9x+5)
ax

=9(3x* ~9x+5) -(6x-9)
8

=9(3x? —9x+5) -3(2x-3)

=27(3x* ~9x +5) (2x-3)
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Question 2:
R - 6
sin® x + cos® x
Answer
Let y =sin’ x +cos" x
(1"' ‘{ P | d 6
s =—=—(sin x)+—(cos" x)
dv dx dx '

vea o @z s d
=3sin’ x-—(sinx)+6¢cos’ x-—(cos x)
dx dx
2 i o :
=3sin’ x-cosx+6cos’ x-(—sinx)

= 3sin x cos x(sin x-2cos’ .\')

Question 3:
(5"_).":"‘2\'

Answer

Page 167 of 191



Class XII Chapter 5 - Continuity and Differentiability Maths

)"h:ns: X

Let y =(5x

Taking logarithm on both the sides, we obtain
log y =3cos2xlogSx

Differentiating both sides with respect tox, we obtain

1dy = 3|:log 5x .i(cos 2x)+cos 2.\"%("’8 53")}
X

ydx dx ‘
dy i 2w d 1L d%
= ——=3y| log 5x(—sin2x)-—(2x)+cos 2x-—-—(5x)
dx i dx S5x dx
dy [ g = COS2X
= —=3y| -2sin2xlog 5x +
dx L X
dy [ 3cos2x ;
= —=—=3y ~6sin2xlog5x
dx -
dy jeos2x | 3COS 2X : .
s—=—=(5x) —6sin2xlog 5x
dx X
Question 4:
sin”' (1\/-\-) 0<x<|
Answer

Let y =sin™' (\\/T)

Using chain rule, we obtain
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Question 5:

Answer
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X
cos
A

Lety= £

V2x+7

By quotient rule, we obtain

d x ax)d
\/2x+7dx[cos 2)—((:05 z)dx(\nxn&?)

dv
dx (V2x+7)
-1 d(x - | d
b ; u
2x+7 ~ dx(2] [cos ]7\/”\'—-{- dv( 2x+7)
\'_(2j
2x+7
-1 2
J2x+7 —(cos' J
B \14_,‘3 2)22x+7
2x+7
5.X
= -2x+7 B o 2
Va-x* x(2x+7) (\/2x+7)(2x+7)
e ¥
i cos 7
Va-x*2x+7 7x+7)
Question 6:
| V1+sinx ++/1—sinm
cot JO<x<—
J1+sinx —+/1-sinx
Answer
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v"l+sinx+\/l—sinx] (l)

Lety=cot™ - :
\/I +sinx —\/I —sinx

. f -
. Jl+smx+\#l—smx
I'hen,

V1+sinx —+/1—-sinx
(\/I+sin.x +\/l—sin.\-)!
(\/l +Sinx - \/l —sinx)(\/l +Sinx + JI —sinx)

- (1+sinx)+(1-sin x)+2\.((l—sin x)(1+sinx)

(1+sinx)—(1-sinx)

—
_2+241-sin’x
2sinx
B l+cosx

sinx

» X
2¢c0s” —

~o

2 X X
2sin - cos
2 2

X
=Cot—
2

Therefore, equation (1) becomes

y=cot™ (cot'—v)
2
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Question 7:

(logx)™*, x>1

Answer
Let y = (logx) ™"
Taking logarithm on both the sides, we obtain

log y = log x-log(log x)

Differentiating both sides with respect tox, we obtain

ldy ¢

l. [Iog x-log(log \)J

v dx  dx

= Lah log (log x) =
T ydx ' e

|

i r
(log x)+log x- ;Tl_log(log x) |

dv [ 1 | d
= —=y| log(logx).—+log x - ———(log x
dx { g(log )): 5 log x d.r( = )]

dv

dx X

L dy _ (1ogx)™ [l . Iog(log.\‘)]

:,\'Elog(logx)ir l:l

ax X X

Question 8:
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cos(acosx+bsinx)  for some constanta and b.

Answer

Let y = cos(acosx+bsinx)

By using chain rule, we obtain
v d :

b 4 ‘—cos(acosx+bsm x)
dx  dx

dy . : d .
=~ =sin (acosx+bsin x)-T(ucos x+bsinx)
ax ax

=—sin(acosx+bsinx)- [u(—sin x)+bcos.\']

=(asinx-bcosx)-sin(acosx +bsin x)

Question 9:
- [sinx-cosy) T 37[
(sinx—cosx) , =X L—
‘ 4 4
Answer
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. (sin y-cosx)
Let y =(sinx—cosx)

Taking logarithm on both the sides, we obtain
log y = log [(_sin X —COs x)hm" m")}
= log y =(sinx—cosx)-log(sinx—cosx)

Differentiating both sides with respect tox, we obtain

% Z—“ = % [(sin X —COoSs .\') log (sin X —Cos \)]
1 dy . d .. ’ ; .
= _ log(sm X —COs .\-) P (sm x- cos.\') + (sm X—COs .r) S log(sm —— _‘_)
y dx dx T
| dy : ; ; 1 d , .
= — % — Jog (sin x — cos x)-(cos.x +sin x) +(sin x — c0s x) - - (sin x — cos x)
yids (sinx—cosx) dx

= % = (sinx—cos .‘,)um.\--mn [(cos x+sinx)-log(sin x —cosx)+(cosx +sin \)]
dx

i = (sinx—cosx)

(smx—cosx)

(cos x +sin .r)[l +log(sin x —cosx)]

Page 174 of 191



Class XII

=

Answer
Lety=x"+x"+a" +d"
Also. letx" =u, x" =v.a" =w. anda’ =5
LYSUAVEWES

dy du

.

dy dx drx dx dx

dv dw ds
_'. .’

=X

= logu = log x"

= logu = xlog x

Differentiating both sides with respect tox, we obtain

X +x‘+a" +a” ) - -
, for some fixed @ >0 and x>0

Chapter 5 - Continuity and Differentiability Maths

(1)
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1 du d d
T logx—(x)+ x- loe ¥
u dx b8 cl\'(\) ¥ dx ( Oc\)
du I: ] }
= —=u|logx-1+x-—
dx X
L PR [log x+1]=x* (1+log x) «(2)
dx
y=x’
v d g, ,
dv g &
= —=ax
il (3)
w=a'

= logw=loga’

= logw=xloga

Differentiating both sides with respect tox, we obtain

i-fﬂ:Ioga-i‘{-(.\')

w o dx dx
dw
= —=wloga
dx
dw i
= —=a"loga ..(4)
dx
s=a"

Since a is constant, a? is also a constant.

ds

Z 0 (5)

From (1), (2), (3), (4), and (5), we obtain
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dy

; x*(1+logx)+ax®" +a" loga+0
ax

a1 x
x*(14logx)+ax® +a"loga
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X" (\——3) for x>3
Answer
Lety= 3 4 (.\' —3)‘-:
Also, let u=x" and v = (.\'-3)‘:
Sy=u+v
Differentiating both sides with respect tox, we obtain

dy du dv
= = — (1)
dx dx dx

.3
u=x"

slogu = Iog(.\":”' )

log u =(x3 ~3)logx

Differentiating with respect to x, we obtain

1 d d
= 7:—102\’ —( —3) (\ - ) (102-\)

ldl > A
2—v~~—lo x2x+(x"=3)--
u dx g ( )

du 2 x*-3
=>—=x" ‘l-l +2.\'10g.\}

dx

| -

Also,

v=(x- 3)Y:

s logv = Iog(.\'—3)‘:
= logv =x"log(x-3)

Differentiating both sides with respect tox, we obtain
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l dv
=1 -3).— log(x-3

o =log(x ( )+ [08(‘ )]

1 dv 5 l d

1O jog(x—3) 2%+ —— L (x-3
:>vdr og(x—3)-2x+x = % dx(\ )
:>-£-‘-"-}--v 2xlog(x-3)+ Y_:,,_.l

dx - x—3

. (x— 3)"‘: [ x:3 +2xlog(x- 3)}

du dv
Substituting the expressions ofzaﬂd; in equation (1), we obtain

2

W ‘l"" "3+2x|ogx]+(x—3)x:l x-3+2xlog(x—3)}
x=:

dx %

Question 12:

dy 5 n T
Find ., if .V=12(l—cost).x:IO(t—smt).—§<t<;

Answer
It is given that, y =12(1-cost),x =10(s—sin¢)
cdx d

E Z IO(I—Sinl):|=lo.g(r—sin:)=|()(|_cos,)

4 [13(1-cost)] =12 (1-cosr) =12- [0~ (-sine) | = 12sin

[dv] , ‘).' I . -,

dv_\dr 12sin —l_--slni-cosi_() 7

Tdx (d\) T 10(1-cost) 10-2sin2 - TR
dt 2
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Question 13:

(f.-\“ Ty | aszca] 2
d‘—,; if y=sin_ x+sin Vl-x", —=1<x <1
Find @x’

Answer

| "

It is given that, y =sin ' x+sin

; ﬂ—i[sin".\*+sin' \/:]

e
3%:%(sin '-‘)*‘%(Sin'ﬁ)
i A

Question 14:

Ifxyl+y+yvl+x =0
dy _ 1

a (l+x)

Answer , for, —1 < x <1, prove that
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It is given that,
1\/m + y\/m =0
T
Squaring both sides, we obtain
X(1+y)=y(1+x)

=X +xy= yz +x°

=>x -y =x'-x’y

=>x* -y =x(y-x)

= (x+y)(x-y)=x(y—x)
LX+FYy=—xy

=>(l+x)y=—x

Differentiating both sides with respect to x, we obtain

y=—
" (1+x)

d d
£1___\_‘:_(I+'\)dx('\)_x£(l+'\)=_(]+-")i-"=_ 1
= (1+x) (+x)° (1+x)
Hence,

Question 15:
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If (.\._a‘)f +( ‘._b)f =2 , for some ¢ > (), prove

3 d |:( ; [
dvY |? del ; dx
il / i
o S =2(x-a)-—(x-a)+2(y-b)-—(y-b)=0
(l:." ‘i\‘ I\
2 Ay
dx Y O N ST W A
that o) H2r0) dx
» i\'_—(\'—a) (1)
dx y—b
is a d’y _d|-(x-a) constant
de®  de|l y—b independent of a
and b :
Answer

It is given that, (x—a) +(y—b) =¢’

Differentiating both sides with respect to x, we obtain
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_(,}’—b)- 4(11\' (x—a)—(x-a)- ‘i(y—b)
(y=b)

_(_v—b)—(x—a)- cﬁv

dx
(y-b)

(-0)-(e-a{ 2

y=b ;
=— = -17)3 [Usmg (l)]

<><>}

(y=b)’

Y +(x—c_7)f (."’—b)2+(_.}f—a):]é
H[“"J . [] ()’-”):] [ (v-b)

d’y _[Q_bf+u-ay] [o-)+p a)]

' (y=b) (=5

dx”
3

lo%] &%

('“ (

(y-b)  (v-b)

= —¢, which is constant and is independent of a and A

Hence, proved.

Question 16:
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dy cos’(a+y)

1f GOV = xcos(a+y), with cosa # £, prove that sina

Answer
It is given that, cos y = xcos(a+y)

d d
S [cos y]= = [.\' cos(a+ ;)]

= —siny g: =cos(a+y)- ;—lv(x) +x- ;—i [cos(a+y)]

= —sin 12— =cos(a+y)+ x~[—sin (a+ 1)] 2‘—
= [xsin (a+y)—sin_v1% =cos(a+y) (1)
= - cos y
Since cos y = x +y), x=
ince cos y=xcos(a+y). x e e
Then, equation (1) reduces to
cosy dy

cos(a +y) -sin(a+y)-siny I =cos(a+ _1;)

3

=5 [cos y-sin(a+y)-siny-cos(a+ 1)] ar cos® (a+y)

=>sin(a +y - y)ﬂ
X

=cos’ (a+b)

dy cos’(a+b
dx sina

Hence, proved.

Question 17:

: 3 d*y
x=a(cost+1sint) gnd ¥ =a(sint—1cost) find T_
If ! dx”
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Answer
It is given that, x = a(coss +rsint) and y = a(sint —tcost)

dx d ;
so—=a-—(cost +1sinr)
dr dt

= a|i—sint+sinr-%(/)+: -Z(sim)]
=a[-sint +sint +tcost| = at cost

dy d i
=a-—(sint—rcost)
dt

wafcost—feost- L1 o)

dt
=a| cost—{cost~tsint} | = arsint

dy
dy \ dt atsint
Si—=—= - = tant
dx [cg ] at cost
dt
dy_d [d""']=i(tanf)=seczr-%

Then, —5-=—| —
dx-  dx dx dx

dx
2 dx dt |
=sec - — =qlCoSt = — =
at cost t dx  atcost
sec’ T
= ,0<1<L
at 2
Question 18:
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If , show that f"(-")exists for all real x, and find it.
Answer
]x, ifx=0

It is known that, §~\'| = 1_\_ <l

3

Therefore, when x = 0, ./'(_-"') = M =X
In this case, /’(‘) = 3-‘«‘:and hence, /.(‘) =6x

n 3 3 3
o - When X < O, / (.\‘) =|_\" = (—‘-) =—=X
In this case, ./ (x)=-3x and hence, f”(x)=—6x

Thus, for/ (%) = , (%) exists for all real x and is given
[6x, ifx=0 by,

/ (Y) = 1-().\', ifx<0

‘{ N 1 —
Using mathematical induction prove that I(‘ )‘ "X for all positive integers n.

Answer

d : S X
To prove: P(n): T(x” ) =nx"" for all positive integers n
dx

Forn=1,

p(1): 4

x)=1=1-x"
d.\‘( )

2P(n)is trueforn=1
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Let P(k) is true for some positive integerKk.
a’ &-

That is, P(/")3*j(-"k):k" :
dx

It has to be proved that P(k + 1) is also true.

Consider = (x“'): & (.\'-.\")

dx dx

=x*. d (x)+x- 4 (.\"‘)

dx dx
=x" 1+x-k-x*
=x" + k"
=(k+1)-x*
=(k+1)-x"**H

Thus, P(k + 1) is true whenever P (k) is true.

[By applying product rule]

Therefore, by the principle of mathematical induction, the statement P(n) is true for

every positive integer n.

Hence, proved.

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain

the sum formula for cosines.
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Answer

sin( A4+ B) = sin Acos B +cos Asin B

Differentiating both sides with respect tox, we obtain

%[sin(A + b’)] = %(sin Acos B)+ % (cos Asin B)
:COS(;‘-‘- B)"£{(14+13)=COS[ '*d*(Sin A)+sin A’i(COSB)
& dx dx

+sin B- i(cos A)+cos A- & (sin B)
dx dx

= cos(A+ B)i(i + B) = cos B-cos Aﬂ+sin A(—sin B)d—B
dx dx dx

+sin B(=sin 4)- £ +¢0s A cos B‘*I[j

dx dx
= cos( A+ B)[d—! + dB} =(cos Acos B~ sin Asin B)-l:(“ + dB]
dv dx de  dx

~.cos( A+ B)=cos Acos B-sin Asin B

f(x) g(x) h(x) f'(x) g'(x) h'(x)

iy
y=| 1 m n If, i{— =| | m "
dx
a b c prI;OVG a b c
that

Answer
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y=| 1 m n
a b C
r=(mc - nb) f(x)=(lc—na)g(x)+(lb—ma)h(x)

Then, Z\ = [(mc—nb) f(x)]- (‘/i[(lc~na)g(x)j + :Z\’ [(1b~ma)h(x)]
=(me—nb) f'(x)~(lc-na)g'(x)+(Ib-ma)h'(x)

S(x) g'(x) H(x)
= [ m n
a b ¢
f'(x) g'(x) A'(x)
dy
Thus, —=| [ m n
dx
a b ¢
Question 23:

Answer

) ) y — patos 'y { } l,-‘ 4
1flt is given that, v =¢ , show that (l -X )( J —x(" -ay=0
dx’ dx
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Taking logarithm on both the sides. we obtain
log y =acos ' xloge
log y=acos™ x
Differentiating both sides with respect to x, we obtain
1D e
ydx m

dy  ~ay

Ta e

By squaring both the sides, we obtain

(i)z _a’y’
dx 1-x°
= (l —x° )(%} =a’y?

a2 Q:_ 2.2
(l X )[d\'] =a)

Again differentiating both sides with respect to x, we obtain

o 2 d . 3 d dv 5 , d 2
(-Ci] I(l—x)+(l—\)xz|:(ij }“‘E(‘)
d.‘ - d\" dz" d"

3(—5] (—2r)+(l—r')x2z.d;§ =a°.2y E)
:(%T(—’r)+(l—t')x2%.%=a:~7.‘-"%
e )
:(l-.rz)%i_'—f—-x%—a:)wﬂ

Hence, proved.
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