

Exercise 15.1 : Solutions of Questions on Page Number : 236 $\,$

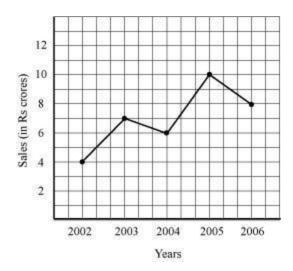
Q1:

The following graph shows the temperature of a patient in a hospital, recorded every hour.

- (a) What was the patient's temperature at 1 p.m.?
- (b) When was the patient's temperature 38.5°C?
- (c) The patient's temperature was the same two times during the period given. What were these two times?
- (d) What was the temperature at 1.30 p.m? How did you arrive at your answer?
- (e) During which periods did the patient's temperature show an upward trend?

Answer:

- (a) At 1 p.m., the patient's temperature was 36.5°C.
- (b) The patient's temperature was 38.5°C at 12 noon.
- (c) The patient's temperature was same at 1 p.m. and 2 p.m.


- (d) The graph between the times 1 p.m. and 2 p.m. is parallel to the x-axis. The temperature at 1 p.m. and 2 p.m. is 36.5°C. So, the temperature at 1:30 p.m. is 36.5°C.
- (e) During the following periods, the patient's temperature showed an upward trend.

9 a.m. to 10 a.m., 10 a.m. to 11 a.m., 2 p.m. to 3 p.m.

Q2:

The following line graph shows the yearly sales figure for a manufacturing company.

- (a) What were the sales in (i) 2002 (ii) 2006?
- (b) What were the sales in (i) 2003 (ii) 2005?
- (c) Compute the difference between the sales in 2002 and 2006.
- (d) In which year was there the greatest difference between the sales as compared to its previous year?

Answer:

(a)

- (i) In 2002, the sales were Rs 4 crores.
- (ii) In 2006, the sales were Rs 8 crores.

(b)

- (i) In 2003, the sales were Rs 7 crores.
- (ii) In 2005, the sales were Rs 10 crores.

(c)

(i) In 2002, the sales were Rs 4 crores and in 2006, the sales were Rs 8 crores.

Difference between the sales in 2002 and 2006

= Rs (8 - 4) crores = Rs 4 crores

(d) Difference between the sales of the year 2006 and 2005

= Rs (10 - 8) crores = Rs 2 crores

Difference between the sales of the year 2005 and 2004

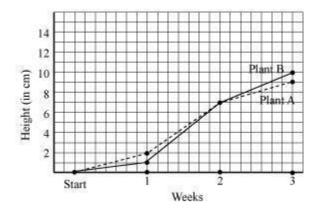
= Rs (10 - 6) crores = Rs 4 crores

Difference between the sales of the year 2004 and 2003

= Rs (7 - 6) crore = Rs 1 crore

Difference between the sales of the year 2003 and 2002

= Rs (7 - 4) crores = Rs 3 crores


Hence, the difference was the maximum in the year 2005 as compared to its previous year 2004.

Q3:

For an experiment in Botany, two different plants, plant A and plant B were grown under similar laboratory conditions. Their heights were measured at the end of each week for 3 weeks. The results are shown by the following graph.

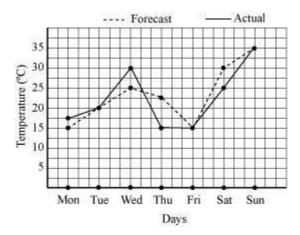
- (a) How high was Plant A after (i) 2 weeks (ii) 3weeks?
- (b) How high was Plant B after (i) 2 weeks (ii) 3weeks?
- (c) How much did Plant A grow during the 3rd week?
- (d) How much did Plant B grow from the end of the 2nd week to the end of the 3rd week?
- (e) During which week did Plant A grow most?
- (f) During which week did Plant B grow least?
- (g) Were the two plants of the same height during any week shown here? Specify.

Answer:

(a)

- (i) After 2 weeks, the height of plant A was 7 cm.
- (ii) After 3 weeks, the height of plant A was 9 cm.

(b)


- (i) After 2 weeks, the height of plant B was 7 cm.
- (ii) After 3 weeks, the height of plant B was 10 cm.
- (c) Growth of plant A during 3^{rd} week = 9 cm 7 cm = 2 cm
- (d) Growth of plant B from the end of the 2^{nd} week to the end of the 3^{rd} week = 10 cm 7 cm = 3 cm
- (e) Growth of plant A during 1^{st} week = 2 cm 0 cm = 2 cmGrowth of plant A during 2^{nd} week = 7 cm - 2 cm = 5 cmGrowth of plant A during 3^{rd} week = 9 cm - 7 cm = 2 cmTherefore, plant A grew the most, i.e. 5 cm, during the 2^{nd} week.
- (f) Growth of plant B during 1^{st} week = 1 cm 0 cm = 1 cm Growth of plant B during 2^{nd} week = 7 cm - 1 cm = 6 cm Growth of plant B during 3^{rd} week = 10 cm - 7 cm = 3 cm Therefore, plant B grew the least, i.e. 1 cm, during the 1^{st} week.
- (g) At the end of the 2nd week, the heights of both plants were same.

Q4:

The following graph shows the temperature forecast and the actual temperature for each day of a week.

- (a) On which days was the forecast temperature the same as the actual temperature?
- (b) What was the maximum forecast temperature during the week?
- (c) What was the minimum actual temperature during the week?
- (d) On which day did the actual temperature differ the most from the forecast temperature?

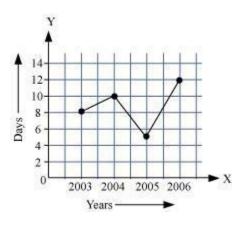
Answer:

- (a) The forecast temperature was same as the actual temperature on Tuesday, Friday, and Sunday.
- (b) The maximum forecast temperature during the week was 35°C.
- (c) The minimum actual temperature during the week was 15°C.
- (d) The actual temperature differs the most from the forecast temperature on Thursday.

Q5:

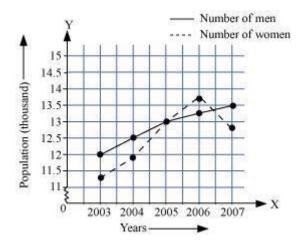
Use the tables below to draw linear graphs.

(a) The number of days a hill side city received snow in different years.

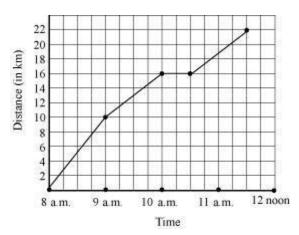

Year	2003	2004	2005	2006
Days	8	10	5	12

(b) Population (in thousands) of men and women in a village in different years.

Year	2003	2004	2005	2006	2007
Number of men	12	12.5	13	13.2	13.5
Number of women	11.3	11.9	13	13.6	12.8


Answer:

(a) By taking the years on x-axis and the number of days on y-axis and taking scale as 1 unit = 2 days on y-axis and 2 unit = 1 year on x-axis, the linear graph of the given information can be drawn as follows.


(b) By taking the years on x-axis and population on y-axis and scale as 1 unit = 0.5 thousand on y-axis and 2 unit = 1 year on x-axis, the linear graph of the given information can be drawn as follows.

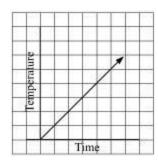
Q6:

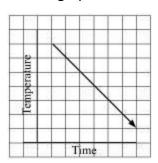
A courier-person cycles from a town to a neighboring suburban area to deliver a parcel to a merchant. His distance from the town at different times is shown by the following graph.

- (a) What is the scale taken for the time axis?
- (b) How much time did the person take for the travel?
- (c) How far is the place of the merchant from the town?
- (d) Did the person stop on his way? Explain.

(e) During which period did he ride fastest?

Answer:

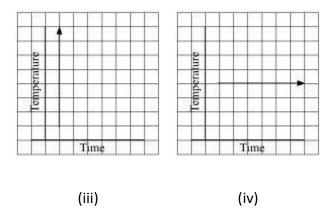

(a) Scale taken for the time axis is 4 units = 1 hour (b) The person travelled during the time 8 a.m. - 11:30 a.m.


Therefore, the person took $3\frac{1}{2}$ hours to travel.

- (c) The merchant is 22 km far from the town.
- (d) Yes, the person stopped on his way from 10 a.m. to 10: 30 a.m. This is indicated by the horizontal part of the graph.
- (e) From the graph, it can be observed that during 8 a.m. to 9 a.m., the person travelled the maximum distance. Thus, the person's ride was the fastest between 8 a.m. and 9 a.m.

Q7:

Can there be a time temperature graph as follows? Justify you're answer:

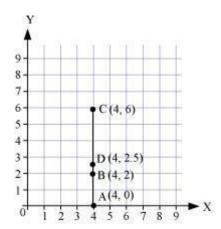


(i)

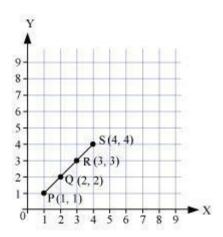
(ii)

Answer:

- (i) This can be a time-temperature graph, as the temperature can increase with the increase in time.
- (ii) This can be a time-temperature graph, as the temperature can decrease with the decrease in time.
- (iii) This cannot be a time-temperature graph since different temperatures at the same time are not possible.
- (iv) This can be a time-temperature graph, as same temperature at different times is possible.

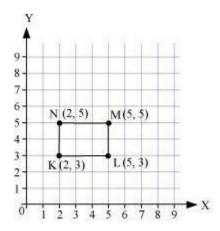

Exercise 15.2 : Solutions of Questions on Page Number : 243 Q1 :

Plot the following points on a graph sheet. Verify if they lie on a line


Answer:

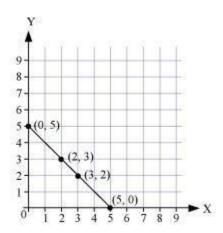
(a) We can plot the given points and join the consecutive points on a graph paper as follows.

From the graph, it can be observed that the points A, B, C, and D lie on the same line.


(b) We can plot the given points and join the consecutive points on a graph paper as follows.

Hence, points P, Q, R, and S lie on the same line.

(c) We can plot the given points and join the consecutive points on a graph paper as follows.

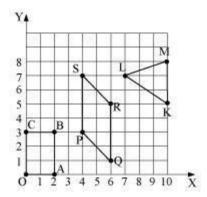


Hence, points K, L, M, and N are not lying on the same line.

Q2:

Draw the line passing through (2, 3) and (3, 2). Find the coordinates of the points at which this line meets the x-axis and y-axis.

Answer:



From the graph, it can be observed that the line joining the points (2, 3) and (3, 2) meets the xaxis at the point (5, 0) and the y-axis at the point (0, 5).

Q3:

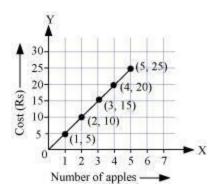
Write the coordinates of the vertices of each of these adjoining figures.

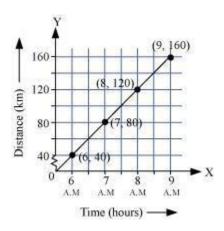
Answer:

The coordinates of the vertices in the given figure are as follows.

Q4:

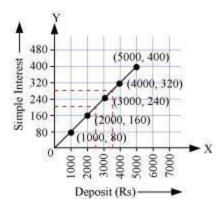
State whether True or False. Correct those are false.


- (i) A point whose x coordinate is zero and y-coordinate is non-zero will lie on the y-axis.
- (ii) A point whose y coordinate is zero and x-coordinate is 5 will lie on y-axis.
- (iii) The coordinates of the origin are (0, 0).


Answer:									
(i) True									
(ii) False	2								
The poi	nt whose <i>y</i> -coordin	ate is	s ze	ro and	X-	-co	ordina	ate is 5 w	rill lie on <i>x</i> -axis.
(iii) True	е								
Exercise Q1 :	e 15.3 : Solutions of	Que	stio	ons on	Pa	ge	Numl	oer : 247	
Draw th	e graphs for the fo	llowi	ng t	ables	of	val	ues, v	vith suita	able scales on the axes.
(a) Cost	of apples		1						
	Number of apples	1	2	3		4	5		
	Cost (in Rs)	5	10	15	2	20	25		
(b) Dista	ance travelled by a	car							
	Time (in hours)	6 a.ı	n.	7 a.m		8	a.m.	9 a.m.	
	Distance (in km)	40	١	80		1	L20	160	
(i) How	much distance did	the c	ar c	over d	lur	ing	the p	period 7.	30 a.m. to 8 a.m.?
	What was the time est on deposits for			ne car l	าลเ	d co	overe	d a dista	nce of 100 km since its start? (c)
Answer	:								

(a) Taking a suitable scale (for x-axis, 1 unit = 1 apple and for y-axis, 1 unit = Rs 5), we can mark the number of apples on x-axis and the cost of apples on y-axis. A graph of the given data is as follows.

(b) Taking a suitable scale (for x-axis, 2 units = 1 hour and for y-axis, 2 units = 40 km), we can represent the time on x-axis and the distance covered by the car on y-axis. A graph of the given data is as follows.



- (i) During the period 7:30 a.m. to 8 a.m., the car covered a distance of 20 km.
- (ii) The car covered a distance of 100 km at 7:30 a.m. since its start.
- (c) Taking a suitable scale,

For x-axis, 1 unit = Rs 1000 and for y-axis, 1 unit = Rs 80

We can represent the deposit on *x*-axis and the interest earned on that deposit on *y*-axis. A graph of the given data is obtained as follows.

From the graph, the following points can be observed.

- (i) Yes. The graph passes through the origin.
- (ii) The interest earned in a year on a deposit of Rs 2500 is Rs 200.
- (iii) To get an interest of Rs 280 per year, Rs 3500 should be deposited.

Q2:

Draw a graph for the following.

(i)

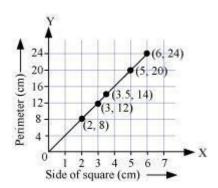
Side of square (in cm)	2	3	3.5	5	6
Perimeter (in cm)	8	12	14	20	24

Is it a linear graph?

(ii)

"")						
	Side of square (in cm)	2	3	4	5	6

Area (in cm²)	4	9	16	25	36	
---------------	---	---	----	----	----	--

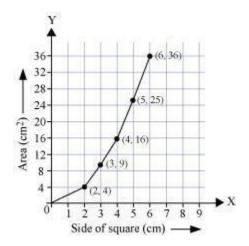

Is it a linear graph?

Answer:

(i) Choosing a suitable scale,

For x-axis, 1 unit = 1 cm and for y-axis, 1 unit = 4 cm

We can represent the side of a square on x-axis and the perimeter of that square on y-axis. A graph of the given data is drawn as follows.


It is a linear graph.

(ii)Choosing a suitable scale,

For x-axis, 1 unit = 1 cm and for y-axis, 1 unit = 4 cm^2

We can represent the side of a square on the x-axis and the area of that square on y-axis. A graph of the given data is as follows.

It is not a linear graph.