What is the Geometric Mean?
The geometric mean of a variable X is the nth positive root of the product of the x1,x2,x3,……….,xn observations. in symbols, we write
G.M=(x1.x2.x3……,xn)1/n
The geometric mean of series containing n observations is the nth root of the product of values.
G.M=(x1.x2.x3……,xn)1/n
The above formula can also be written by using a logarithm
- For Ungroup Data
- For Group Data
G.M=Antilog (sigma f logX/sigma f)
For example:
Find the geometric mean of the observation 2, 4, 8, by using the basic formula
Solution: given observations 2, 4, 8
n=3
Using formula
G.M=(x1,x2,x3,……,xn)1/n
G.M=(2x4x8)1/3
G.M=(64)1/3
G.M=(43)1/3
G.M=4
For example: Find the geometric mean of observations 2, 4, 8 using the logarithmic formula for ungrouping data.
Solution: Given observations 2, 4, 8
X | log |
2 | 0.3010 |
4 | 0.6021 |
8 | 0.9031 |
total | Sigma log X=1.8062 |
Using formula:
G.M=Antilog (sigma logX/n)
G.M=Antilog (1.8062/3)
G.M= Antilog (0.6021)
G.M= 4.00003
G.M=4
For example: – Find the geometric mean for the following group data.
Marks in percentage | Frequency /no. of students |
33–40 | 28 |
41–50 | 31 |
51–60 | 12 |
61–70 | 9 |
71–75 | 5 |
Solution: we proceed as fellows
classes | f | X | Log(X) | f(log) |
33–40 | 28 | 33+40/2=36.5 | Log(36.5)=1.562293 | 43.7442 |
41–50 | 31 | 41+50/2=45.5 | Log(45.5)=1.658011 | 51.39835 |
51–60 | 12 | 51+60/2=55.5 | Log(55.5)=1.744293 | 20.93152 |
61–70 | 9 | 61+70/2=65.5 | Log(65.5)=1.816241 | 16.34617 |
71–75 | 5 | 71+75/2=73 | Log(73)=1.863323 | 9.316614 |
Sigma f =85 | Sigma f(logX) =141.7369 |
Using formula:
G.M=Antilog (sigma f logX/sigma f)
G.M=Antilog (141.7369/85)
G.M=Antilog (1.66749)
G.M=46.50% marks
Leave a Reply